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Sinais de energia



Energia de um sinal

A energia de um sinal 𝑥(𝑡) é definida por

𝐸𝑥 = ∫
∞

−∞
|𝑥(𝑡)|2 d𝑡.

Um sinal com 0 < 𝐸𝑥 < ∞ é chamado de sinal de energia.

A energia é uma medida da “intensidade” do sinal ao longo de todo o tempo.
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Exercício

Determine a energia dos sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.
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Exercício

Determine a energia dos sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.

Resposta:

(a) 𝐸𝑥 = 𝐴2𝑇 .

(b) 𝐸𝑥 = 𝑐2

2𝑎
.
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Teorema de Parseval

É possível calcular a energia de um sinal 𝑥(𝑡) no domínio da frequência:

𝐸𝑥 = ∫
∞

−∞
|𝑋(𝑓)|2 d𝑓.

Esse resultado é conhecido como teorema de Parseval.
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Demonstração do teorema de Parseval

𝐸𝑥 = ∫
∞

−∞
|𝑥(𝑡)|2 d𝑡

= ∫
∞

−∞
𝑥(𝑡)𝑥∗(𝑡) d𝑡

= ∫
∞

−∞
𝑥(𝑡)[∫

∞

−∞
𝑋(𝑓)𝑒𝑗2𝜋𝑡𝑓 d𝑓]

∗

d𝑡

= ∫
∞

−∞
𝑥(𝑡)[∫

∞

−∞
𝑋∗(𝑓)𝑒−𝑗2𝜋𝑡𝑓 d𝑓]d𝑡

= ∫
∞

−∞
𝑋∗(𝑓)[∫

∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑡𝑓 d𝑡]d𝑓

= ∫
∞

−∞
𝑋∗(𝑓)𝑋(𝑓) d𝑓 = ∫

∞

−∞
|𝑋(𝑓)|2 d𝑓. ∎
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Densidade espectral de energia

A densidade espectral de energia de um sinal de energia 𝑥(𝑡) é definida por

Ψ𝑥(𝑓) = |𝑋(𝑓)|2.

Esta definição é motivada pelo teorema de Parseval. Assim:

𝐸𝑥 = ∫
∞

−∞
Ψ𝑥(𝑓) d𝑓.
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Exercício

Determine a densidade espectral de energia dos sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.

Em seguida, verifique o teorema de Parseval.
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Exercício

Determine a densidade espectral de energia dos sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.

Em seguida, verifique o teorema de Parseval.

Resposta:

(a) Ψ𝑥(𝑓) = 𝐴2𝑇 2 sinc2(𝑇 𝑓).

(b) Ψ𝑥(𝑓) =
𝑐2

𝑎2 + (2𝜋𝑓)2
.

7 / 13



Autocorrelação temporal de energia

A autocorrelação temporal de energia de um sinal de energia 𝑥(𝑡) é definida por

𝜓𝑥(𝜏) = ∫
∞

−∞
𝑥(𝑡)𝑥∗(𝑡 − 𝜏) d𝑡.

É uma medida da similaridade entre 𝑥(𝑡) e sua versão deslocada de 𝜏 .

Propriedades:

1. Se 𝑥(𝑡) é real, então 𝜓𝑥(𝜏) é real e par.

2. 𝜓𝑥(𝜏) = 𝑥(𝜏) ⋆ 𝑥∗(−𝜏).
A autocorrelação temporal de energia é a convolução do sinal com sua versão refletida no tempo.

3. 𝐸𝑥 = 𝜓𝑥(0).
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Exercício

Determine a autocorrelação temporal de energia dos sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.
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Exercício

Determine a autocorrelação temporal de energia dos sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.

Resposta:

(a) 𝜓𝑥(𝜏) = 𝐴2𝑇 tri(𝜏/𝑇 ).

(b) 𝜓𝑥(𝜏) =
𝑐2

2𝑎
𝑒−𝑎|𝜏|.
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Teorema de Wiener–Khinchin para sinais de energia determinísticos

A autocorrelação temporal de energia 𝜓𝑥(𝜏) e a densidade espectral de energia Ψ𝑥(𝑓) são 
pares transformados de Fourier:

Ψ𝑥(𝑓) = ℱ︀{𝜓𝑥(𝜏)}.

Demonstração:

ℱ︀{𝜓𝑥(𝜏)} = ℱ︀{𝑥(𝜏) ⋆ 𝑥∗(−𝜏)}
= ℱ︀{𝑥(𝜏)}ℱ︀{𝑥∗(−𝜏)}
= 𝑋(𝑓)𝑋∗(𝑓)

= |𝑋(𝑓)|2

= Ψ𝑥(𝑓). ∎
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Exercício

Verifique o teorema para os sinais abaixo.

(a) 𝑥(𝑡) = 𝐴 rect(𝑡/𝑇 ), onde 𝑇 > 0.

(b) 𝑥(𝑡) = 𝑐𝑒−𝑎𝑡 u(𝑡), onde 𝑎 > 0.
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