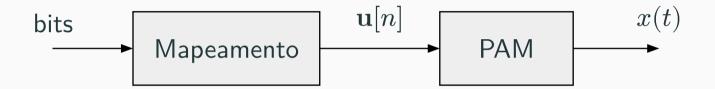

Sistemas de Comunicação I Códigos de linha


Prof. Roberto Wanderley da Nóbrega

Instituto Federal de Santa Catarina

Códigos de linha

Códigos de linha

Considere o caso em que a sequência real $\mathbf{u}[n]$ advém de uma sequência de bits a partir de um mapeamento bits \mapsto símbolos.

Exemplos de mapeamento

- **Polar:** bit $0 \mapsto -1$ e bit $1 \mapsto +1$. Pode-se utilizar a convenção oposta.
- Unipolar: bit $0 \mapsto 0$ e bit $1 \mapsto 1$. Também chamado de "apolar" ou "on-off."
- AMI: bit $0 \mapsto 0$ e bit $1 \mapsto \pm 1$, alternadamente. Alternate mark inversion, também chamado de "bipolar".
- Manchester: bit $0 \mapsto (+1, -1)$ e bit $1 \mapsto (-1, +1)$. Alternativamente, é possível modelar como "polar" + "pulso Manchester".

Exercício

Esboce o sinal modulado x(t) para cada código de linha abaixo, referente ao bits 100101. Assuma amplitude de $5\,\mathrm{V}$ e taxa de bits de $200\,\mathrm{bit/s}$.

- (a) Polar NRZ.
- (b) Polar RZ.
- (c) Unipolar NRZ.
- (d) Unipolar RZ.
- (e) AMI NRZ.
- (f) AMI RZ.
- (g) Manchester.

Propriedades desejáveis de um código de linha

- Características espectrais.
 - Largura de banda menor possível.
 - ...fixada a taxa de bits.
 - Densidade espectral de potência favorável.

Exemplo: nulo no DC (canal ou dispositivos intermediários podem eliminar componentes contínuos).

- Desempenho na presença de ruído.
 - Taxa de erro de bits menor possível.

...fixadas a taxa de bits e a largura de banda.

- Facilidade de implementação.
 - Possibilidade de recuperação do clock a partir do próprio sinal.
 - Independência da informação.

Exemplo: sequência longa de 0s ou de 1s.

Referências

Referências

- [1] S. Haykin, Communication Systems, 4th ed. John Wiley & Sons, 2001.
- [2] B. P. Lathi and Z. Ding, *Modern Digital and Analog Communication Systems*, 4th ed. Oxford University Press, 2009.
- [3] R. G. Gallager, *Principles of Digital Communication*. Cambridge University Press, 2008.
- [4] J. G. Proakis and M. Salehi, *Digital Communications*, 5th ed. McGraw Hill, 2008.