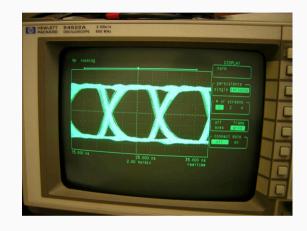
Sistemas de Comunicação I

Modulação por amplitude de pulso



Prof. Roberto Wanderley da Nóbrega

Instituto Federal de Santa Catarina

Modulação por amplitude de pulso

Modelo matemático

$$x(t) = \sum_{n \in \mathbb{Z}} \mathbf{u}[n] p(t - nT_{\mathrm{s}})$$

Entrada:

• $\mathbf{u}[n]$: sequência de números reais.

Saída:

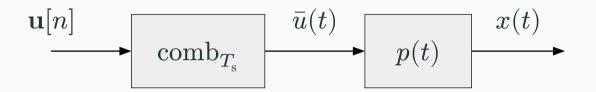
• x(t): sinal modulado em PAM.

Parâmetros:

- $T_{\rm s}$: intervalo de símbolo (s).
- $R_{\rm s}=1/T_{\rm s}$: taxa de símbolos (símbolos/s $\stackrel{\text{def}}{=}$ baud).
- p(t): pulso de formatação.

Modelo matemático alternativo

Do ponto de vista matemático (e também de simulação), é útil separar o modulador conforme as duas etapas abaixo.



De fato,

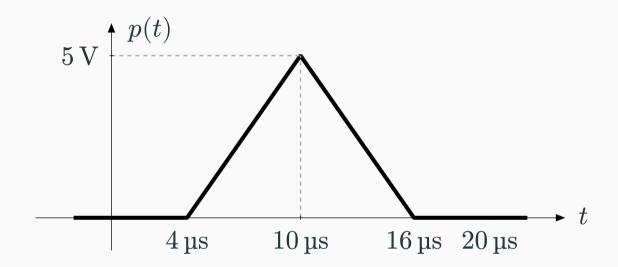
$$\bar{u}(t) = \sum_{n \in \mathbb{Z}} \mathbf{u}[n] \delta(t - nT_{\mathrm{s}})$$

e, portanto,

$$x(t) = p(t) \star \bar{u}(t) = p(t) \star \sum_{n \in \mathbb{Z}} \mathbf{u}[n] \delta(t - nT_{\mathrm{s}}) = \sum_{n \in \mathbb{Z}} \mathbf{u}[n] p(t - nT_{\mathrm{s}}).$$

Exercício

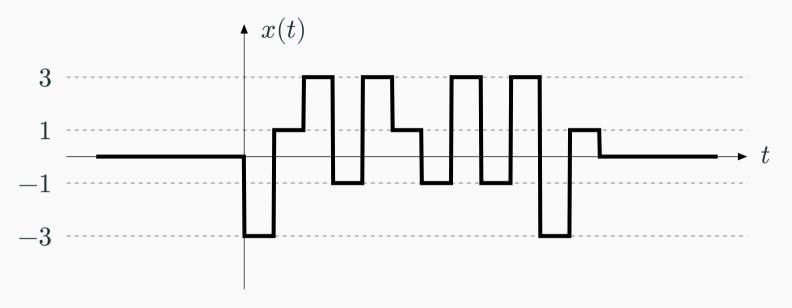
Seja $R_{\rm s}=50\,{\rm kbaud}$ e p(t) como abaixo. Esboce o sinal x(t) modulado em PAM correspondente à sequência de entrada ${\bf u}[n]=[0.4,-0.1,-0.5,0.8,-0.2].$



Possíveis escolhas de pulsos

A escolha do pulso p(t) depende da aplicação. Algumas opções são:

Pulso retangular.



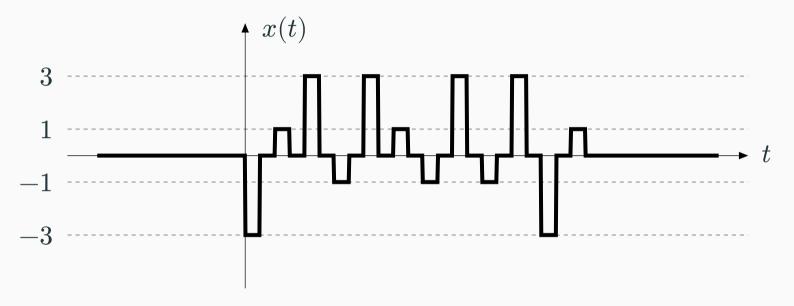
Pulso sinc.

No decorrer da disciplina encontraremos outros pulsos.

Possíveis escolhas de pulsos

A escolha do pulso p(t) depende da aplicação. Algumas opções são:

Pulso retangular.



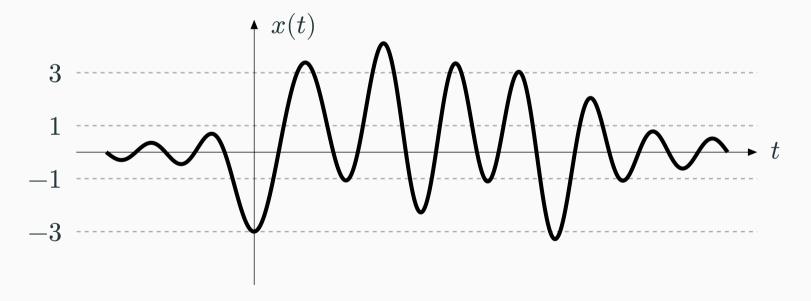
Pulso sinc.

No decorrer da disciplina encontraremos outros pulsos.

Possíveis escolhas de pulsos

A escolha do pulso p(t) depende da aplicação. Algumas opções são:

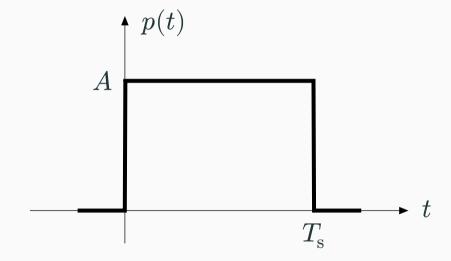
- Pulso retangular.
- Pulso sinc.



No decorrer da disciplina encontraremos outros pulsos.

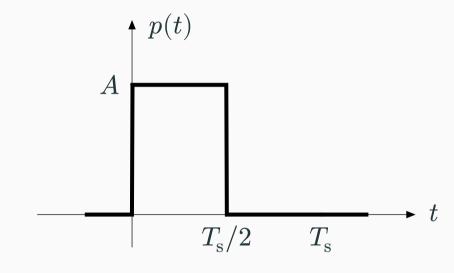
Pulso retangular

Retangular NRZ (non-return-to-zero)



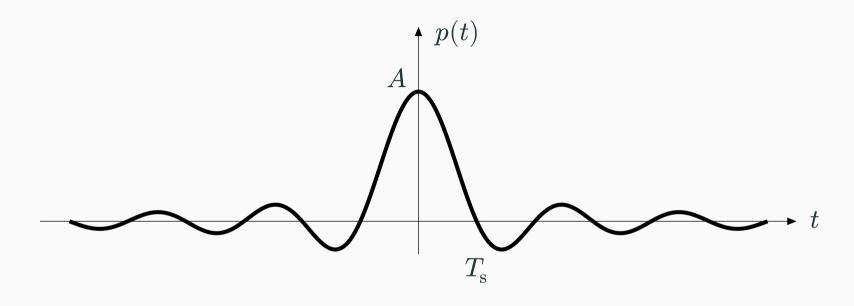
$$p(t) = A \operatorname{rect}\left(\frac{t - T_{\mathrm{s}}/2}{T_{\mathrm{s}}}\right)$$

Retangular RZ (return-to-zero)



$$p(t) = A \operatorname{rect}\left(rac{t - T_{\mathrm{s}}/4}{T_{\mathrm{s}}/2}
ight)$$

Pulso sinc



$$p(t) = A\operatorname{sinc}(t/T_{\mathrm{s}})$$

O pulso sinc tem duração ilimitada, mas espectro limitado.

Teorema: Densidade espectral de potência de um sinal PAM

Seja $\mathbf{u}[n]$ é um processo estocástico de tempo discreto, estacionário no sentido amplo, com média $\mu_{\mathbf{u}}$ e autocovariância $C_{\mathbf{u}}[\ell]$. Então o sinal PAM

$$x(t) = \sum_{n \in \mathbb{Z}} \mathbf{u}[n] p(t - nT_{\mathrm{s}})$$

é cicloestacionário no sentido amplo, com densidade espectral de potência dada por

$$S_x(f) = \frac{1}{T_{\rm s}} |P(f)|^2 \ S_{\bf u}(T_{\rm s}f),$$

onde

- $P(f) = \mathcal{F}\{p(t)\}$ é o espectro de p(t);
- $S_{\mathbf{u}}(\phi) = \mathcal{F}\{C_{\mathbf{u}}[\ell] + \mu_{\mathbf{u}}^2\}$ é a densidade espectral de potência de $\mathbf{u}[n]$.

Para mais detalhes, veja [1, Sec 3.4].

Exercício

Determine a densidade espectral de potência do sinal PAM resultante x(t) considerando

- (a) $\mathbf{u}[n] \stackrel{\text{iid}}{\sim} \text{Uniform}(\{\pm 1, \pm 3\})$, com p(t) pulso retangular NRZ.
- (b) $\mathbf{u}[n] = \mathbf{z}[n] + \mathbf{z}[n-1]$, onde $\mathbf{z}[n] \stackrel{\text{iid}}{\sim} \text{Normal}(0,1)$, com p(t) pulso sinc.

Exercício

Determine a densidade espectral de potência do sinal PAM resultante x(t) considerando

- (a) $\mathbf{u}[n] \stackrel{\text{iid}}{\sim} \text{Uniform}(\{\pm 1, \pm 3\})$, com p(t) pulso retangular NRZ.
- (b) $\mathbf{u}[n] = \mathbf{z}[n] + \mathbf{z}[n-1]$, onde $\mathbf{z}[n] \stackrel{\text{iid}}{\sim} \text{Normal}(0,1)$, com p(t) pulso sinc.

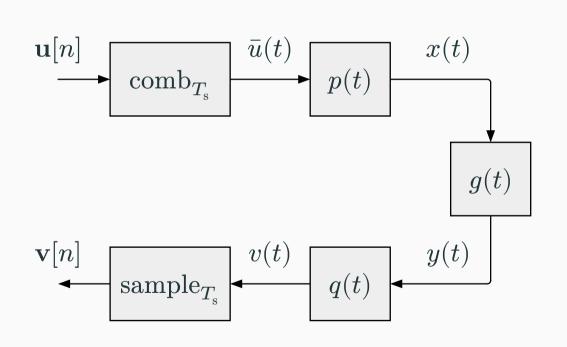
Respostas:

- (a) $S_x(f) = 5A^2T_s \operatorname{sinc}^2(T_s f)$.
- (b) $S_x(f) = 4A^2T_{\rm s}\cos^2(\pi T_{\rm s}f)\operatorname{rect}(T_{\rm s}f)$.

Canal com resposta limitada em frequência

Modelo matemático

Assumiremos agora um canal com resposta limitada em frequência e ausência de ruído.



Sinais envolvidos:

- $\mathbf{u}[n]$: sequência de entrada.
- x(t): sinal enviado (PAM).
- y(t): sinal recebido.
- $\mathbf{v}[n]$: sequência de saída.

Pulsos:

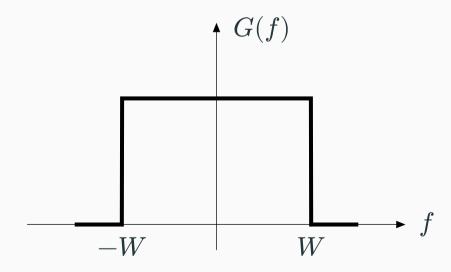
- p(t): pulso de transmissão.
- g(t): resposta ao impulso do canal.
- q(t): pulso de recepção.

Modelo da resposta em frequência do canal

O canal será modelado por um sistema LTI com resposta em frequência dada por

$$G(f) = \operatorname{rect}\left(\frac{f}{2W}\right),$$

onde W é a largura de banda do canal.



Observações

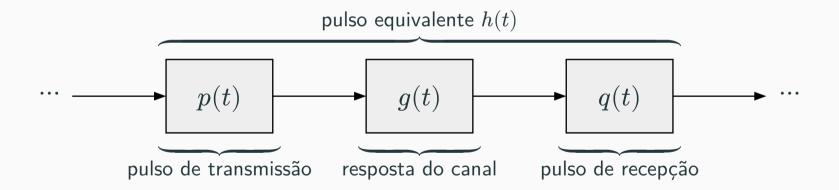
- Os pulsos p(t) e q(t) podem ser escolhidos pelo projetista. Já a resposta ao impulso do canal, $g(t) = \mathcal{F}^{-1}\{G(f)\}$, não pode ser alterada.
- ullet A inclusão do filtro de recepção q(t) pode parecer desnecessária. Isso fará mais sentido quando estudarmos o desempenho do sistema na presença de ruído.

Pulso equivalente do sistema

Define-se a cascata

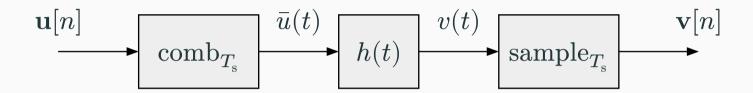
$$h(t) = p(t) \star g(t) \star q(t)$$

como sendo o **pulso equivalente** do sistema.



Pulso equivalente do sistema

Com essa definição, o sistema se simplifica como abaixo.



Note que a operação $\mathbf{u}[n] \mapsto v(t)$ é PAM, mas com pulso h(t). Assim,

$$v(t) = \sum_{i \in \mathbb{Z}} \mathbf{u}[i] h(t - iT_{\mathrm{s}})$$

e portanto

$$\mathbf{v}[n] = v(nT_{\mathrm{s}}) = \sum_{i \in \mathbb{Z}} \mathbf{u}[i]h(nT_{\mathrm{s}} - iT_{\mathrm{s}}).$$

Interferência intersimbólica

Abrindo o somatório:

$$\begin{aligned} \mathbf{v}[n] &= \sum_{i \in \mathbb{Z}} h(nT_{\mathrm{s}} - iT_{\mathrm{s}}) \mathbf{u}[i] \\ &= \underbrace{\cdots + h(T_{\mathrm{s}}) \mathbf{u}[n-1]}_{\text{indesejado}} + \underbrace{h(0) \mathbf{u}[n]}_{\text{desejado}} + \underbrace{h(-T_{\mathrm{s}}) \mathbf{u}[n+1] + \cdots}_{\text{indesejado}}. \end{aligned}$$

Os termos indesejados são chamados de interferência intersimbólica (ISI).

Critério de Nyquist para ISI nula

Teorema. (H. Nyquist, 1928) Para evitar interferência intersimbólica, é necessário que o pulso equivalente do sistema satisfaça (no domínio do tempo)

$$h(nT_{
m s}) = egin{cases} 1, & n = 0, \ 0, & n
eq 0, \end{cases}$$

ou, equivalentemente (no domínio da frequência),

$$\sum_{k\in\mathbb{Z}} H(f-kR_{\mathrm{s}}) = T_{\mathrm{s}},$$

onde $H(f) = \mathcal{F}\{h(t)\}.$

Demonstração

Novamente, faremos uso do pente de Dirac. A condição no domínio do tempo equivale a

$$h(t) \sum_{n \in \mathbb{Z}} \delta(t - nT_{\mathrm{s}}) = \delta(t).$$

Tomando a transformada de Fourier, obtemos

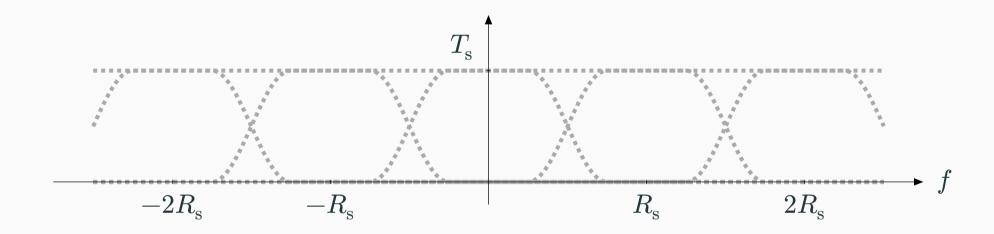
$$H(f) \star \frac{1}{T_{\rm s}} \sum_{k \in \mathbb{Z}} \delta \left(f - \frac{k}{T_{\rm s}} \right) = 1,$$

de onde segue que

$$rac{1}{T_{
m s}}\sum_{k\in\mathbb{Z}}Higg(f-rac{k}{T_{
m s}}igg)=1.$$

Interpretação gráfica

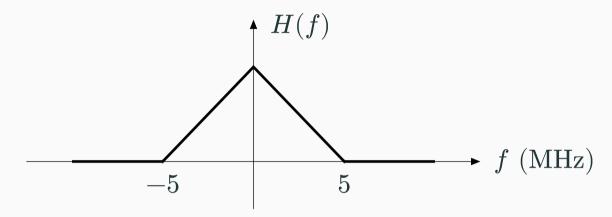
A condição $\sum_{k\in\mathbb{Z}} H(f-kR_{\mathrm{s}}) = T_{\mathrm{s}}$ é ilustrada abaixo.



Ou seja, o somatório de réplicas do espectro do pulso equivalente, centradas em múltiplos de $R_{\rm s}$, deve ser uma constante, $T_{\rm s}$.

Exercício

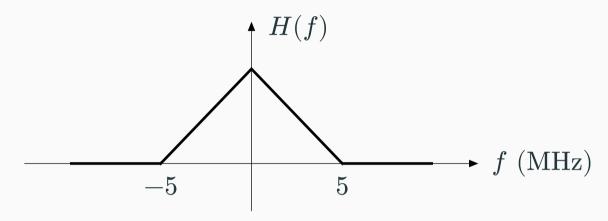
Considere o espectro H(f) de um pulso mostrado abaixo.



- (a) Para qual taxa de símbolos $R_{\rm s}$ o pulso satisfaz o critério de Nyquist para ISI nula?
- (b) Determine a forma de onda h(t) do pulso e, considerando a resposta da letra (a), calcule os valores de $h(nT_{\rm s})$ para n inteiro.

Exercício

Considere o espectro H(f) de um pulso mostrado abaixo.



- (a) Para qual taxa de símbolos $R_{
 m s}$ o pulso satisfaz o critério de Nyquist para ISI nula?
- (b) Determine a forma de onda h(t) do pulso e, considerando a resposta da letra (a), calcule os valores de $h(nT_{\rm s})$ para n inteiro.

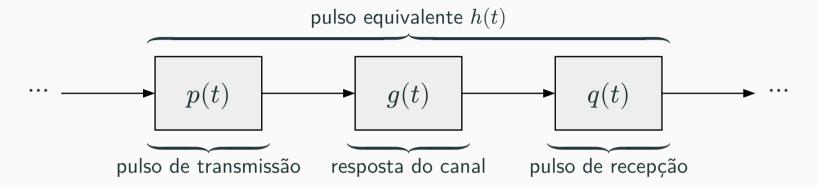
Respostas:

(a)
$$R_{\rm s} = 5 \,\mathrm{Mbaud}$$
.

(b)
$$h(t) = \operatorname{sinc}^2(t/T_{\mathrm{s}})$$
, com $h(nT_{\mathrm{s}}) = \delta[n]$.

Observações

• O critério de Nyquist diz respeito *ao pulso equivalente* e não ao pulso de transmissão.



• Como a resposta do canal tem largura de banda $B_g=W$, então o pulso equivalente necessariamente terá largura de banda $B_h\leq W$, pois

$$H(f) = P(f)G(f)Q(f).$$

• O pulso $h(t)=\mathrm{rect}(t/T_{\mathrm{s}})$ satisfaz o critério de Nyquist (veja no domínio do tempo), mas é impossível tê-lo como pulso equivalente, a menos que $W=\infty$.

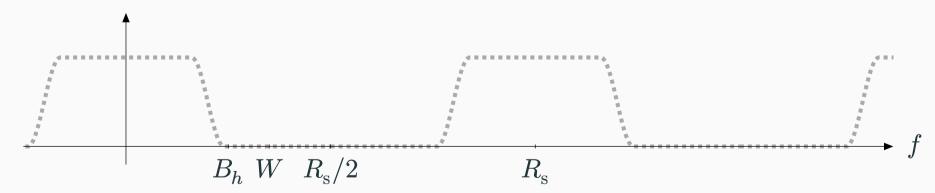
Corolário

Para evitar interferência intersimbólica é necessário

$$W \geq R_{\rm s}/2$$
.

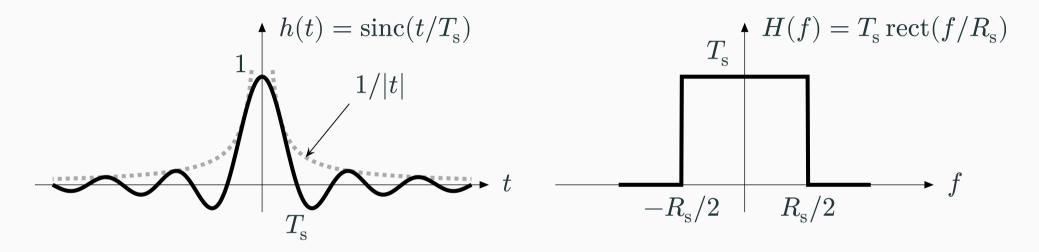
Por exemplo, para se transmitir símbolos à taxa de $R_{\rm s}=40\,{\rm kbaud}$ sem interferência intersimbólica é necessário um canal com largura de banda de pelo menos $20\,{\rm kHz}$.

Demonstração: De fato, se $W < R_{\rm s}/2$, então é impossível ter $\sum_{k \in \mathbb{Z}} H(f-kR_{\rm s}) = T_{\rm s}$:



Pulso sinc

O limite $W=R_{\rm s}/2$ é alcançado com o pulso sinc.



O problema do pulso sinc é o seu lento decaimento temporal:

$$\operatorname{sinc}(t) = \frac{\sin(\pi t)}{\pi t} \sim \frac{1}{|t|}.$$

Isso torna o pulso sinc sensível ao problema de sincronismo de símbolo.

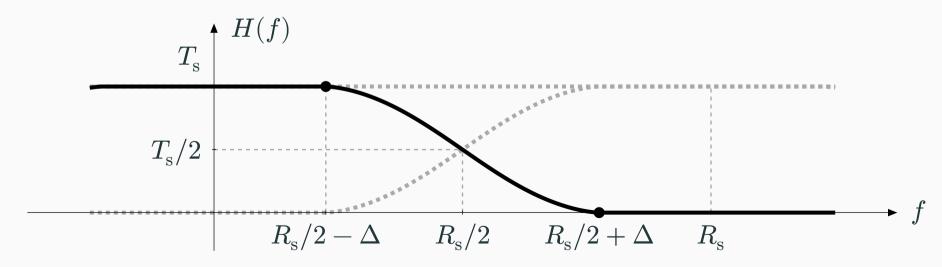
Simetria vestigial

Assuma que o pulso equivalente h(t) tenha largura de banda

$$B_h = R_{\rm s}/2 + \Delta,$$

onde $\Delta \in [0, R_{\rm s}/2]$ é o **excesso de banda** (em Hz) com relação ao mínimo teórico $R_{\rm s}/2$.

Pelo critério de Nyquist, o espectro do pulso equivalente deve apresentar simetria ímpar ao redor do ponto $(R_{\rm s}/2,T_{\rm s}/2)$. Isso é chamado de **simetria vestigial**.



Fator de rolloff

O excesso de banda com relação ao mínimo teórico pode ser expresso em termos relativos:

$$\alpha = \frac{\Delta}{R_{\rm s}/2}.$$

Essa quantidade é chamada de **fator de rolloff**. Como $\Delta \in [0, R_{\rm s}/2]$, temos $\alpha \in [0, 1]$.

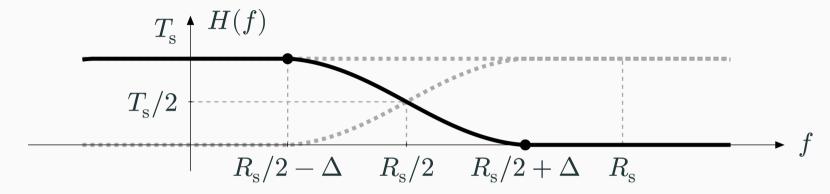
Em termos do fator de rolloff, a largura de banda do pulso é dada por

$$B_h = \frac{R_{\rm s}}{2} + \Delta = \frac{R_{\rm s}}{2}(1+\alpha).$$

Exemplo: Se $R_{\rm s}=40\,{\rm kbaud}$, então o mínimo teórico é $R_{\rm s}/2=20\,{\rm kHz}$. Um pulso com fator de rolloff de $\alpha=0.3$ (ou seja, 30% a mais que o mínimo teórico) terá excesso de banda de $\Delta=6\,{\rm kHz}$ e largura de banda de $26\,{\rm kHz}$.

Forma geral da simetria vestigial

Para simplificar a notação, sejam $f_1=R_{\rm s}/2-\Delta$ e $f_2=R_{\rm s}/2+\Delta$.



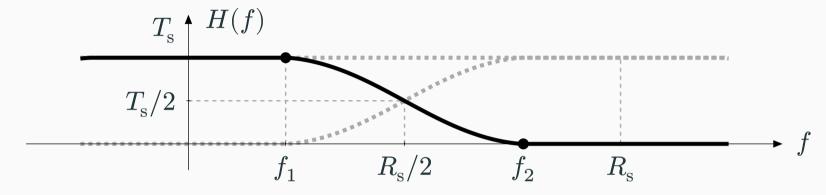
Matematicamente, o espectro de um pulso com simetria vestigial é da forma

$$H(f) = T_{\rm s} \begin{cases} 1, & |f| < f_1, \\ \Phi\left(\frac{|f| - f_1}{f_2 - f_1}\right), & f_1 \le |f| \le f_2, \\ 0, & f_2 < |f|. \end{cases}$$

onde $\Phi:[0,1]\to\mathbb{R}$ é tal que $\Phi(x)+\Phi(1-x)=1$.

Forma geral da simetria vestigial

Para simplificar a notação, sejam $f_1=R_{\rm s}/2-\Delta$ e $f_2=R_{\rm s}/2+\Delta$.



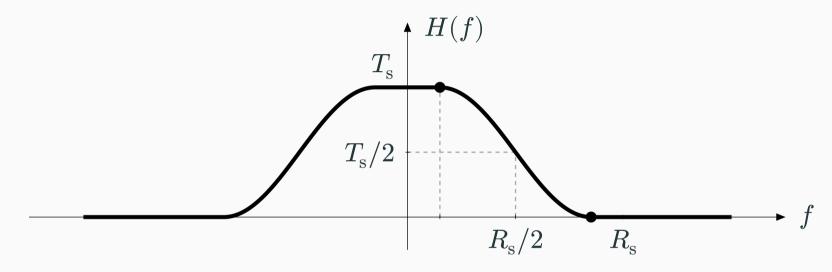
Matematicamente, o espectro de um pulso com simetria vestigial é da forma

$$H(f) = T_{\rm s} \begin{cases} 1, & |f| < f_1, \\ \Phi\left(\frac{|f| - f_1}{f_2 - f_1}\right), & f_1 \le |f| \le f_2, \\ 0, & f_2 < |f|. \end{cases}$$

onde $\Phi:[0,1]\to\mathbb{R}$ é tal que $\Phi(x)+\Phi(1-x)=1$.

Pulso cosseno levantado

A escolha mais popular de espectro de pulso com simetria vestigial é obtida a partir de $\Phi(x) = \frac{1}{2} + \frac{1}{2}\cos(\pi x)$. O pulso resultante é chamado de **pulso cosseno levantado**.



Observação: Ao contrário dos pulsos retangular e sinc, o nome "cosseno levantado" é devido ao seu formato no domínio da frequência, e não no domínio do tempo.

Expressões matemáticas

No domínio da frequência, o pulso cosseno levantado é dado por

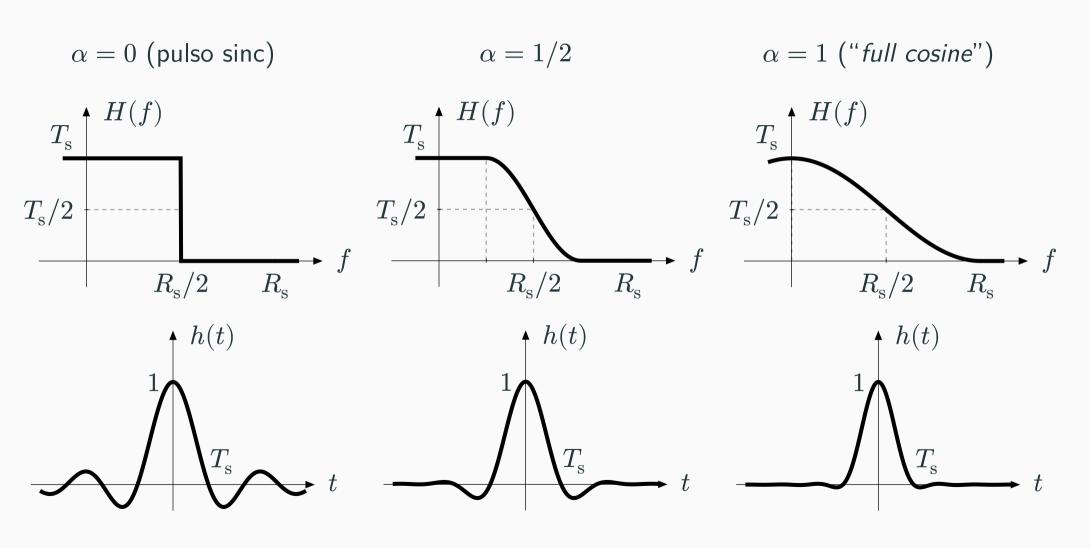
$$H(f) = T_{\rm s} \begin{cases} 1, & |f| < f_1, \\ \frac{1}{2} + \frac{1}{2} \cos\left(\pi \frac{|f| - f_1}{f_2 - f_1}\right), & f_1 \le |f| \le f_2, \\ 0, & f_2 < |f|, \end{cases}$$

e, no domínio do tempo, por

$$h(t) = \mathrm{sinc}(t/T_{\mathrm{s}}) \frac{\mathrm{cos}(\pi \alpha t/T_{\mathrm{s}})}{1 - \left(2\alpha t/T_{\mathrm{s}}\right)^{2}},$$

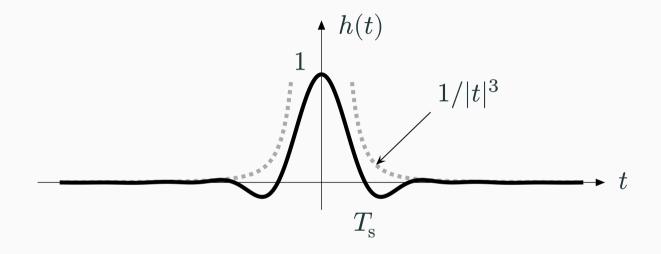
onde f_1 , f_2 e α são definidos como antes.

Exemplos



Decaimento rápido

O pulso cosseno levantado resolve o problema do lento decaimento temporal do pulso sinc:



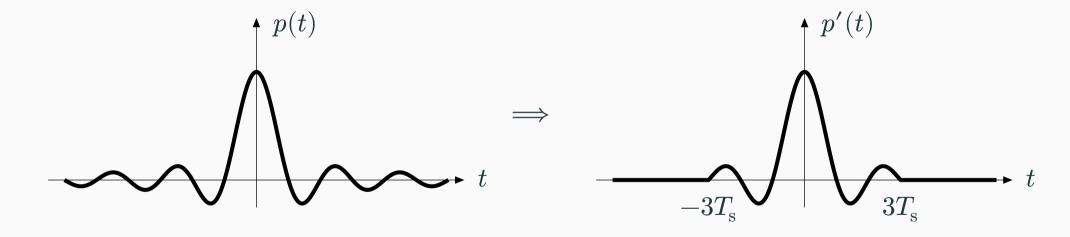
Temos:

$$h(t) = \underbrace{\operatorname{sinc}(t)}_{\sim 1/|t|} \underbrace{\frac{\cos(\pi \alpha t)}{1 - (2\alpha t)^2}}_{\sim 1/|t|^2} \sim \frac{1}{|t|^3}.$$

Como lidar com pulsos de duração ilimitada

Na prática, não é possível utilizar pulsos com duração ilimitada. Isso é resolvido com:

Um truncamento...

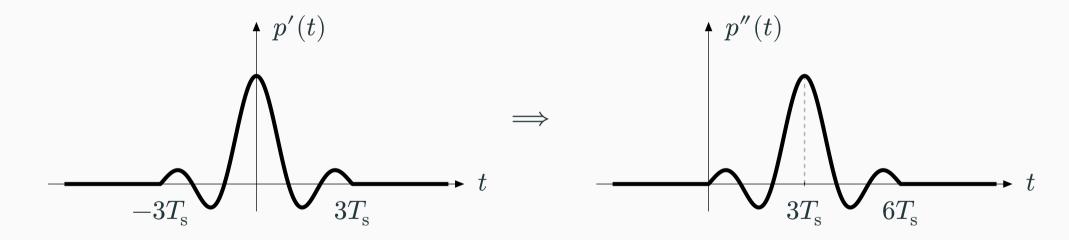


O exemplo considerou um truncamento de $-3T_{
m s}$ a $3T_{
m s}$. Na prática, o intervalo é maior.

Como lidar com pulsos de duração ilimitada

Na prática, não é possível utilizar pulsos com duração ilimitada. Isso é resolvido com:

...em conjunto com um atraso.

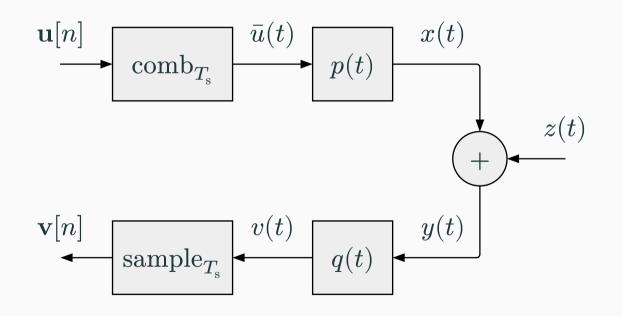


O clock do receptor ficará atrasado com relação ao do transmissor. Veremos mais detalhes adiante.

Canal com ruído gaussiano branco aditivo

Modelo matemático

Assumiremos agora um canal com *ruído gaussiano branco aditivo* (AWGN). A resposta do canal será desconsiderada neste momento.

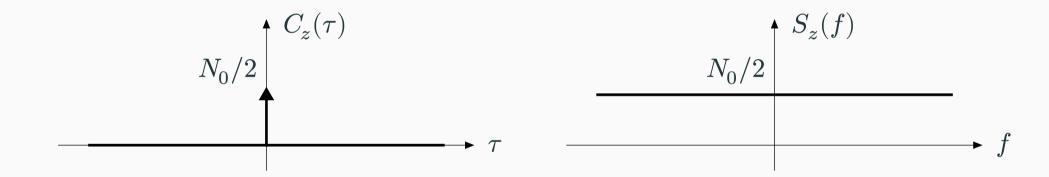


Sinais envolvidos:

- $\mathbf{u}[n]$: sequência de entrada.
- x(t): sinal enviado (PAM).
- z(t): ruído aditivo.
- y(t): sinal recebido.
- $\mathbf{v}[n]$: sequência de saída.

Modelo do ruído

O ruído z(t) é modelado como um processo estocástico de tempo contínuo, independente da entrada $\mathbf{u}[n]$, gaussiano, estacionário no sentido amplo, de média $\mu_z=0$, autocovariância $C_z(\tau)=(N_0/2)\delta(\tau)$ e densidade espectral de potência $S_z(f)=N_0/2$.

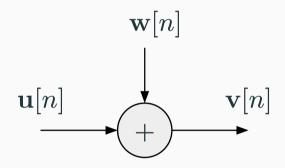


Observações:

- A constante N_0 tem unidade W/Hz ou V^2/Hz , dependendo do contexto.
- \blacksquare A potência do ruído na faixa de operação fica $\int_{-W}^W S_z(f) \, \mathrm{d}f = \int_{-W}^W (N_0/2) \, \mathrm{d}f = N_0 W.$

Modelo em tempo discreto

Proposição. Se o pulso equivalente $h(t) = p(t) \star q(t)$ satisfaz o critério de Nyquist para ISI nula, então o modelo do sistema se simplifica como abaixo.



A caracterização do "ruído discreto" $\mathbf{w}[n]$ será dada mais adiante.

Demonstração

O sinal recebido é dado por

$$y(t) = x(t) + z(t) = \sum_{i \in \mathbb{Z}} \mathbf{u}[i]p(t - iT_{\mathrm{s}}) + z(t).$$

O sinal na saída do filtro de recepção é dado por

$$v(t) = q(t) \star y(t) = \sum_{i \in \mathbb{Z}} \mathbf{u}[i] h(t - iT_{\mathrm{s}}) + w(t),$$

onde $h(t)=q(t)\star p(t)$ é o pulso equivalente do sistema e $w(t)=q(t)\star w(t)$ é ruído gaussiano filtrado. Amostrando em $t=nT_{\rm s}$:

$$\mathbf{v}[n] = \mathbf{u}[n] + \mathbf{w}[n],$$

onde $\mathbf{v}[n] = v(nT_{\mathrm{s}})$ e $\mathbf{w}[n] = w(nT_{\mathrm{s}})$.

Caracterização do ruído discreto

Proposição. O ruído $\mathbf{w}[n]$ é um processo estocástico de tempo discreto, independente de $\mathbf{u}[n]$, gaussiano, estacionário no sentido amplo, de média $\mu_{\mathbf{w}}=0$ e autocovariância

$$C_{\mathbf{w}}[\ell] = \frac{N_0}{2} \psi_q(\ell T_{\mathrm{s}}),$$

onde $\psi_q(\tau)=\int_{-\infty}^\infty q(t)q(t-\tau)\,\mathrm{d}t$ é a autocorrelação temporal de energia do pulso q(t). Em particular, a potência de $\mathbf{w}[n]$ é

$$P_{\mathbf{w}} = \mathbb{E}[\mathbf{w}^{2}[n]] = C_{\mathbf{w}}[0] = \frac{N_{0}}{2}\psi_{q}(0) = \frac{N_{0}}{2}E_{q},$$

onde $E_q = \int_{-\infty}^{\infty} q^2(t) dt$ é a energia do pulso q(t).

Observação: Ao contrário do ruído original z(t), é possível que o ruído discreto $\mathbf{w}[n]$ tenha amostras correlacionadas.

Demonstração

O ruído filtrado é dado por $w(t)=q(t)\star z(t)$. Como z(t) é estacionário no sentido amplo, gaussiano e de média zero, então w(t) também será estacionário no sentido amplo, gaussiano e de média zero. A densidade espectral de potência de z(t) é dada por

$$S_w(f) = |Q(f)|^2 \ S_z(f) = \Psi_q(f)(N_0/2),$$

onde $\Psi_q(f)=|Q(f)|^2$ é a densidade espectral de energia do pulso q(t). Portanto, a autocovariância de z(t) é dada por

$$C_w(\tau) = \mathcal{F}^{-1}\{S_w(f)\} = (N_0/2)\mathcal{F}^{-1}\big\{\Psi_q(f)\big\} = (N_0/2)\psi_q(\tau),$$

onde $\psi_q(\tau)=\int_{-\infty}^{\infty}q(t)q(t-\tau)\,\mathrm{d}t$ é a autocorrelação temporal de energia do pulso q(t).

Como consequência, o ruído discreto $\mathbf{w}[n] = w(nT_{\mathrm{s}})$ também será estacionário no sentido amplo, gaussiano, de média zero e autocovariância $C_{\mathbf{w}}[\ell] = (N_0/2)\psi_a(\ell T_{\mathrm{s}})$.

Filtro casado

Teorema. Assuma que o pulso equivalente $h(t)=p(t)\star q(t)$ satisfaça o critério de Nyquist para ISI nula. Assuma também que $E_p=1$. Então, o pulso de recepção que minimiza a potência do ruído discreto $\mathbf{w}[n]$ é dado pelo filtro casado:

$$q(t) = p(-t).$$

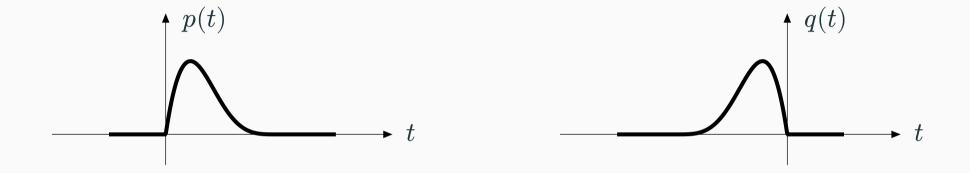
Nesse caso, $\mathbf{w}[n] \stackrel{\text{iid}}{\sim} \text{Normal}(0, N_0/2)$ ("ruído gaussiano branco discreto").

Observações:

- É comum considerar a maximização da razão sinal—ruído ao invés da minimização da potência de $\mathbf{w}[n]$. Devido à normalização adotada $(E_p=1)$, esses dois problemas são equivalentes.
- "Note a restrição de p(t) com energia unitária. Não há perda de generalidade nisso, uma vez que a sequência de entrada $\mathbf{u}[n]$ pode ser escalada arbitrariamente, e não faz sentido ter um fator de escala arbitrário em dois lugares" [2, Sec. 6.3.2].

Interpretação gráfica do filtro casado

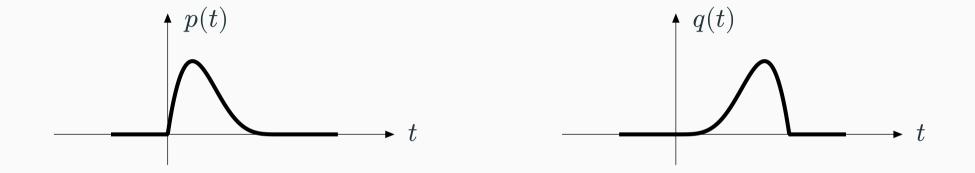
Na filtragem casada, o pulso de recepção q(t) é o espelho do pulso de transmissão p(t):



Se p(t) é causal, então q(t)=p(-t) é não-causal. Na prática, isso é resolvido com um atraso em q(t), o que implica em um atraso também em ${\bf v}[n]$.

Interpretação gráfica do filtro casado

Na filtragem casada, o pulso de recepção q(t) é o espelho do pulso de transmissão p(t):



Se p(t) é causal, então q(t)=p(-t) é não-causal. Na prática, isso é resolvido com um atraso em q(t), o que implica em um atraso também em ${\bf v}[n]$.

Demonstração

Antes de começar, note que

$$h(t) = q(t) \star p(t) = \int_{-\infty}^{\infty} q(\tau)p(t-\tau) d\tau$$

Pela desigualdade de Cauchy-Schwarz temos:

$$\underbrace{\left(\int_{-\infty}^{\infty} [q(\tau)]^2 d\tau\right) \left(\int_{-\infty}^{\infty} [p(-\tau)]^2 d\tau\right)}_{E_p=1} \ge \underbrace{\left(\int_{-\infty}^{\infty} q(\tau)p(-\tau) d\tau\right)^2}_{h(0)=1},$$

com igualdade se e somente se $q(t)=\lambda p(-t)$. A condição $E_p=h(0)=1$ força $\lambda=1$.

- $\therefore E_q \geq 1 \text{ com igualdade se e somente se } q(t) = p(-t).$
- $P_{\mathbf{w}} \geq N_0/2$ com igualdade se e somente se q(t) = p(-t).

Exercício

Considere o pulso de transmissão

$$p(t) = A \operatorname{rect}\left(\frac{t - T_{\mathrm{s}}/2}{T_{\mathrm{s}}}\right).$$

Supondo a sequência de entrada $\mathbf{u}[n] = [-1, +1, +1, -3]$ e ausência de ruído, determine:

- (a) O valor da constante A de modo que p(t) tenha energia unitária.
- (b) O sinal x(t) na entrada do canal.
- (c) O pulso de recepção q(t) casado ao pulso de transmissão p(t). Aplique um atraso em q(t) para torná-lo causal.
- (d) O pulso equivalente h(t).
- (e) O sinal v(t) na saída do filtro de recepção.
- (f) A sequência de saída $\mathbf{v}[n]$. Esboce.

Exercício

Respostas:

(a)
$$A = 1/\sqrt{T_{\rm s}}$$
.

$$(b) -$$

(c)
$$q(t) = A \operatorname{rect}\left(\frac{t - T_{\mathrm{s}}/2}{T_{\mathrm{s}}}\right)$$
.

(d)
$$h(t) = \operatorname{tri}\left(\frac{t - T_{\mathrm{s}}}{T_{\mathrm{s}}}\right)$$
.

$$(e)$$
 -

(f)
$$\mathbf{v}[n] = [0, -1, +1, +1, -3].$$

Pulsos "root-Nyquist"

Em breve.

Referências

Referências

- [1] J. G. Proakis and M. Salehi, *Digital Communications*, 5th ed. McGraw Hill, 2008.
- [2] R. G. Gallager, *Principles of Digital Communication*. Cambridge University Press, 2008.
- [3] S. Haykin, Communication Systems, 4th ed. John Wiley & Sons, 2001.
- [4] B. P. Lathi and Z. Ding, *Modern Digital and Analog Communication Systems*, 4th ed. Oxford University Press, 2009.