

Processos Estocásticos

Engenharia de Telecomunicações

Professor: Roberto Wanderley da Nóbrega Semestre: 2025.2

Lista de exercícios 1

- 1. Considere uma variável aleatória X definida através do seguinte experimento probabilístico. Um dado honesto é lançado.
 - Se o resultado for \square ou \square , então $X \sim \text{Uniform}([1,4])$.
 - Se o resultado for \square , então $X \sim \text{UniformDiscrete}(\{1, 2, 3\})$.
 - Se o resultado for \square ou \square , então $X \sim \text{Uniform}([-1,2])$.
 - Se o resultado for \blacksquare , então X = 3.
 - (a) Determine e esboce a função densidade de probabilidade de X.
 - (b) Determine e esboce a função de distribuição cumulativa de X.
 - (c) Determine a média de X.
 - (d) Determine $Pr[X \ge 2]$.
- 2. Um sinal de trânsito permanece, alternadamente, 40 segundos aberto e 20 segundos fechado. Seja X a variável aleatória que caracteriza o tempo de espera de um motorista que passe por este sinal, em segundos.
 - (a) Determine e esboce a função densidade de probabilidade de X.
 - (b) Determine e esboce a função de distribuição cumulativa de X.
 - (c) Determine o tempo de espera médio.
- ${f 3.}$ Considere uma variável aleatória Laplaciana ${f X}$ de média ${f 0},$ cuja função densidade de probabilidade é dada por

$$f_X(x) = \frac{1}{2b}e^{-|x|/b},$$

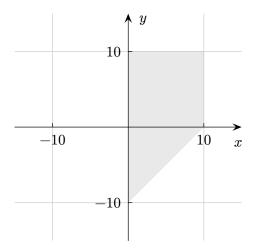
onde b > 0 é um parâmetro de escala. Determine a função densidade de probabilidade e a variância da variável aleatória $Y = \text{clip}_a(X)$, onde

$$\operatorname{clip}_a(x) = \begin{cases} -a, & \operatorname{se} \ x < -a; \\ x, & \operatorname{se} -a \leq x \leq a; \\ +a, & \operatorname{se} \ x > a. \end{cases}$$

4. Sejam $B_1, B_2, B_3 \sim \text{Bern}(3/4)$ variáveis aleatórias sorteadas independentemente. Sejam

$$X = B_1 + B_2 + B_3$$
, e $Y = B_1 B_2 B_3$.

- (a) Determine a função massa de probabilidade conjunta de X e Y .
- (b) Determine e esboce as funções massa de probabilidade marginais de X e Y.
- (c) Determine e esboce as funções massa de probabilidade condicionais de X dado que Y=y, para y=0 e para y=1.
- (d) Determine a covariância entre X e Y.
- 5. Considere duas variáveis aleatórias X e Y com função densidade de probabilidade conjunta constante (igual a k) e diferente de zero apenas na área sombreada da figura abaixo.



- (a) Determine o valor da constante k.
- (b) Determine $\Pr[X \geq Y]$.
- (c) Determine e esboce a função densidade de probabilidade marginal de Y.
- (d) Determine e esboce a função de distribuição cumulativa marginal de Y.
- (e) Determine e esboce a função densidade de probabilidade condicional de Y dado X = 5.
- (f) Determine a covariância entre X e Y.
- 6. Uma régua de comprimento unitário é quebrada em um ponto aleatório. O pedaço da esquerda é novamente quebrado. Seja X a variável aleatória que define, a partir da extremidade esquerda da régua, o ponto em que a régua é quebrada pela primeira vez e Y a variável aleatória que define o segundo ponto de quebra.
 - (a) Determine a função densidade de probabilidade marginal de X. Esboce.
 - (b) Determine a função densidade de probabilidade condicional de Y dado X=x. Esboce para x=1/4 e x=3/4.

- (c) Determine a função densidade de probabilidade conjunta de X e Y. Esboce a região do plano em que a densidade conjunta é não-nula.
- (d) Determine a função densidade de probabilidade marginal de Y. Esboce.
- (e) Determine a função densidade de probabilidade condicional de X dado Y=y. Esboce para y=1/4 e y=3/4.
- (f) Determine as médias de X e de Y.
- (g) Determine as variâncias de X e de Y.
- (h) Determine a covariância e o coeficiente de Pearson entre X e Y.
- 7. Sejam $X_1, X_2, X_3 \sim \text{Uniform}([-1, 2])$ variáveis aleatórias **contínuas** sorteadas independentemente.
 - (a) Sejam

$$Y_1 = X_1$$

 $Y_2 = X_1 X_2$
 $Y_3 = X_1 X_2 X_3$

Determine o vetor média e a matriz covariância do vetor aleatório $\vec{Y} = \begin{bmatrix} Y_1 & Y_2 & Y_3 \end{bmatrix}^\mathsf{T}$.

(b) Sejam

$$\begin{split} Z_1 &= Y_1 \\ Z_2 &= Y_1 + Y_2 \\ Z_3 &= Y_1 + Y_2 + Y_3 \end{split}$$

Determine o vetor média e a matriz covariância do vetor aleatório $\vec{Z} = \begin{bmatrix} Z_1 & Z_2 & Z_3 \end{bmatrix}^\mathsf{T}$. Utilize a formulação matricial.