On the Capacity of Multiplicative Finite-Field Matrix Channels

Roberto W. Nóbrega Bartolomeu F. Uchôa-Filho Danilo Silva

Federal University of Santa Catarina Department of Electrical Engineering Communications Research Group

2011 IEEE International Symposium on Information Theory August 1, 2011, Saint Petersburg, Russia

Table of contents

[Motivation](#page-2-0)

Linear network coding

Linear network coding

O On each node: output is a linear combination of the input

2/15

Linear network coding

O On each node: output is a linear combination of the input

• Alphabet: finite field \mathbb{F}_q

Nóbrega, Uchôa-Filho, Silva — [On the Capacity of Multiplicative Finite-Field Matrix Channels](#page-0-0)

Nóbrega, Uchôa-Filho, Silva — [On the Capacity of Multiplicative Finite-Field Matrix Channels](#page-0-0)

Nóbrega, Uchôa-Filho, Silva — [On the Capacity of Multiplicative Finite-Field Matrix Channels](#page-0-0)

[Channel model](#page-11-0)

Multiplicative finite-field matrix channels

Nóbrega, Uchôa-Filho, Silva — [On the Capacity of Multiplicative Finite-Field Matrix Channels](#page-0-0)

• Probabilistic model: matrices are random variables (bold)

- **•** Probabilistic model: matrices are random variables
- DMC defined by $(\mathcal{X}, p(Y|X), \mathcal{Y})$

- **•** Probabilistic model: matrices are random variables
- DMC defined by $(\mathcal{X}, p(Y|X), \mathcal{Y})$
- $p(Y|X)$ induced by $p(G)$ through the channel law:

$$
p(Y|X) = \sum_G p(G) 1[Y = GX]
$$

Previous works

- **G** full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv G uniform [Jafari et al., 2011]

Previous works

- **G** full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv G uniform [Jafari et al., 2011]
	- Too particular: may not be accurate

Previous works

- **G** full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv G uniform [Jafari et al., 2011]

• Too particular: may not be accurate

G with arbitrary distribution [Yang et al., 2010]

5/15

Previous works

- **G** full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv G uniform [Jafari et al., 2011]

• Too particular: may not be accurate

- **G** with arbitrary distribution [Yang et al., 2010]
	- Too general: complex channel description (q^{nm})

G uniform given rank $(u.g.r.) \triangleq$ matrices with same rank are equiprobable

- **G** uniform given rank $(u.g.r.) \triangleq$ matrices with same rank are equiprobable
	- Simple channel description $(n + 1)$

- **G** uniform given rank $(u.g.r.) \triangleq$ matrices with same rank are equiprobable
	- Simple channel description $(n + 1)$
	- Keeps the essence of non-coherence

Nóbrega, Uchôa-Filho, Silva — [On the Capacity of Multiplicative Finite-Field Matrix Channels](#page-0-0)

6/15

This work

- **G** uniform given rank $(u.g.r.) \triangleq$ matrices with same rank are equiprobable
	- Simple channel description $(n + 1)$
	- Keeps the essence of non-coherence
	- Serves a lower bound on the capacity for the general case:

Comparison

• Example: **G** of dimension 3×3 , binary field

Comparison

• Example: **G** of dimension 3×3 , binary field

Comparison

• Example: **G** of dimension 3×3 , binary field

Comparison

• Example: **G** of dimension 3×3 , binary field

• Rank distribution depends on the topology, the link erasure probabilities, and the linear combinations

[Our results](#page-29-0)

 $Y = GX$ $u \triangleq$ rank X v \triangleq rank Y r \triangleq rank G

 $Y = GX$ $u \triangleq$ rank $X \qquad v \triangleq$ rank $Y \qquad r \triangleq$ rank G

Channel transition probability

$$
p(Y|X) = \begin{cases} \frac{p(v|u)}{|\mathcal{T}_q^{n \times u, v}|}, & \text{if } \langle Y \rangle \subseteq \langle X \rangle, \\ 0, & \text{else.} \end{cases}
$$

 $Y = GX$ $u \triangleq$ rank $X \qquad v \triangleq$ rank $Y \qquad r \triangleq$ rank G

Channel transition probability

$$
p(Y|X) = \begin{cases} \frac{p(v|u)}{|\mathcal{T}_q^{n \times u,v}|}, & \text{if } \langle Y \rangle \subseteq \langle X \rangle, \\ 0, & \text{else.} \end{cases}
$$

 $\rho(v|u)$: rank transition probability:

$$
p(v|u) = \sum_{r=0}^n p(r) \frac{|\mathcal{T}_q^{n \times u, v}|}{|\mathcal{T}_q^{n \times n, r}|} \phi_q(n; u, n, v, r),
$$

calculated using a combinatorial result [Brawley and Carlitz, 1973]

Nóbrega, Uchôa-Filho, Silva — [On the Capacity of Multiplicative Finite-Field Matrix Channels](#page-0-0)

 $Y = GX$ $u \triangleq$ rank $X \qquad v \triangleq$ rank $Y \qquad r \triangleq$ rank G

Channel transition probability

$$
p(Y|X) = \begin{cases} \frac{p(v|u)}{|\mathcal{T}_q^{n \times u,v}|}, & \text{if } \langle Y \rangle \subseteq \langle X \rangle, \\ 0, & \text{else.} \end{cases}
$$

•
$$
p(Y|X)
$$
: $q^{nm} \times q^{nm}$ matrix

$$
\bullet \ \ p(\nu|u): (n+1) \times (n+1) \text{ matrix}
$$

Rank transition probability

$$
Y = GX
$$

$$
u \triangleq \text{rank } X \qquad v \triangleq \text{rank } Y \qquad r \triangleq \text{rank } G
$$

• Example: **G** of dimension 3×3 , binary field

Channel capacity

• Maximization split in two stages:

$$
C = \max_{p(X)} I(\mathbf{X}; \mathbf{Y})
$$

=
$$
\max_{p(u)} \max_{p(X):p(u)} I(\mathbf{X}; \mathbf{Y})
$$

Channel capacity

• Maximization split in two stages:

$$
C = \max_{p(X)} I(\mathbf{X}; \mathbf{Y})
$$

=
$$
\max_{p(u)} \max_{p(X):p(u)} I(\mathbf{X}; \mathbf{Y})
$$

Inner stage: Solved, max achieved with u.g.r. input

$$
\max_{p(X):p(u)} I(\mathbf{X};\mathbf{Y}) = \sum_{v} p(v) \log_q \frac{a_v}{p(v)} - \sum_{u} b_u p(u) \triangleq I^*(p(u))
$$

Channel capacity

• Maximization split in two stages:

$$
C = \max_{p(X)} I(\mathbf{X}; \mathbf{Y})
$$

=
$$
\max_{p(u)} \max_{p(X):p(u)} I(\mathbf{X}; \mathbf{Y})
$$

Inner stage: Solved, max achieved with u.g.r. input

$$
\max_{p(X):p(u)} I(\mathbf{X};\mathbf{Y}) = \sum_{v} p(v) \log_q \frac{a_v}{p(v)} - \sum_{u} b_u p(u) \triangleq I^*(p(u))
$$

Outer stage: No closed-form solution

$$
\max_{p(u)} I^*(p(u)) = \text{convex optimization problem}
$$

Channel capacity

Original problem

$$
C = \max_{p(X)} I(p(X))
$$

Convex optimization on q^{nm} variables

Channel capacity

Original problem

$$
C = \max_{p(X)} I(p(X))
$$

Convex optimization on q^{nm} variables

New problem

$$
C = \max_{p(u)} I^*(p(u))
$$

Convex optimization on $n + 1$ variables

Channel capacity

Original problem

$$
C = \max_{p(X)} I(p(X))
$$

Convex optimization on q^{nm} variables

Problems are equivalent

New problem

$$
C = \max_{p(u)} I^*(p(u))
$$

Convex optimization on $n + 1$ variables

Upper bound

$#1$ – Actual optimization problem

$$
C = \max_{p(u)} I^*(p(u))
$$

subject to $p(0) + ... + p(n) = 1 \quad \forall u : p(u) \ge 0$

Upper bound

$#1$ – Actual optimization problem $C = \max_{p(u)} I^*(p(u))$ subject to $p(0) + ... + p(n) = 1 \quad \forall u : p(u) > 0$

$#2$ – Modified optimization problem $C = \max_{p(u)} I^*(p(u))$ subject to $p(0) + ... + p(n) = 1 \quad \forall u : p(u) \geq 0$

Upper bound

$#1$ – Actual optimization problem $C = \max_{p(u)} I^*(p(u))$ subject to $p(0) + \ldots + p(n) = 1 \quad \forall u : p(u) \ge 0$

Problems are not equivalent

 $#2$ – Modified optimization problem $C = \max_{p(u)} I^*(p(u))$ subject to $p(0) + ... + p(n) = 1 \quad \forall u : p(u) \geq 0$

11/15

Upper bound

Exact solution for #2:

$$
\tilde{C} = \log_q \sum_{v=0}^n |\mathcal{T}_q^{n \times m, v}| q^{-c_v}
$$

where c_v 's are the solution of a triangular linear system of equations

Upper bound

 \bullet Exact solution for $\#2$:

$$
\tilde{C} = \log_q \sum_{v=0}^n |\mathcal{T}_q^{n \times m, v}| q^{-c_v}
$$

where c_v 's are the solution of a triangular linear system of equations

 \bullet Upper bound: $C \leq \tilde{C}$

11/15

Upper bound

 \bullet Exact solution for $#2$:

$$
\tilde{C} = \log_q \sum_{v=0}^n |\mathcal{T}_q^{n \times m, v}| q^{-c_v}
$$

where c_v 's are the solution of a triangular linear system of equations

- \bullet Upper bound: $C \leq \tilde{C}$
- Sometimes this is also the solution for $#1!$

Constant-rank input

 \bullet Input matrices limited to have rank u

Constant-rank input

\bullet Input matrices limited to have rank u

Rank-u capacity $C_u = \sum_{n=1}^{n}$ $v=0$ $\rho(\textcolor{black}{v}|\textcolor{black}{u})$ log $_q$ $\left[\begin{matrix}m\\v\end{matrix}\right]_q$ $\begin{bmatrix} u \\ v \end{bmatrix}_q$

Constant-rank input

\bullet Input matrices limited to have rank u

Rank-u capacity $C_u = \sum_{n=1}^{n}$ $v=0$ $\rho(\textcolor{black}{v}|\textcolor{black}{u})$ log $_q$ $\left[\begin{matrix}m\\v\end{matrix}\right]_q$ $\begin{bmatrix} u \\ v \end{bmatrix}_q$

Asymptotically optimal: max $C_u \leq C \leq \max_u C_u + \log_q n$

Constant-rank input

\bullet Input matrices limited to have rank u

Rank-u capacity $C_u = \sum_{n=1}^{n}$ $v=0$ $\rho(\textcolor{black}{v}|\textcolor{black}{u})$ log $_q$ $\left[\begin{matrix}m\\v\end{matrix}\right]_q$ $\begin{bmatrix} u \\ v \end{bmatrix}_q$

Asymptotically optimal: max $C_u \leq C \leq \max_u C_u + \log_q n$

Unconstrained capacity, for $q \to \infty$

$$
\mathcal{C}=\mathcal{C}_{u^*}
$$

An example

"Trellis network"

$Pr[ensure] = 10\%$ for each link, binary field

An example

"Trellis network"

Communication via subspaces

• The matrix channel:

Communication via subspaces

• The matrix channel:

• The subspace channel:

Communication via subspaces

• The matrix channel:

• The subspace channel:

• Communication via subpaces is optimal for G u.g.r.:

 $I(X; Y) = I(U; V)$

14/15

Communication via subspaces

• The matrix channel:

• The subspace channel:

• Communication via subpaces is optimal for G u.g.r.:

 $I(X; Y) = I(U; V)$

Approach: "grouping of letters" in a DMC

[Conclusion](#page-57-0)

U.g.r. transfer matrix: reasonable model for non-coherent networks

- U.g.r. transfer matrix: reasonable model for non-coherent networks
- Capacity: optimization problem, bounds, special cases

Review

- U.g.r. transfer matrix: reasonable model for non-coherent networks
- Capacity: optimization problem, bounds, special cases
- Communication via subspaces: still optimal

15/15

Review

- U.g.r. transfer matrix: reasonable model for non-coherent networks
- Capacity: optimization problem, bounds, special cases
- Communication via subspaces: still optimal
- Main open problem: codes

Thank you! Roberto W. Nóbrega rwnobrega@eel.ufsc.br