Motivation

Model

Results

Conclusion

On the Capacity of Multiplicative Finite-Field Matrix Channels

Roberto W. Nóbrega Bartolomeu F. Uchôa-Filho Danilo Silva

Federal University of Santa Catarina Department of Electrical Engineering Communications Research Group

2011 IEEE International Symposium on Information Theory August 1, 2011, Saint Petersburg, Russia

Results

Conclusion

Table of contents

Results

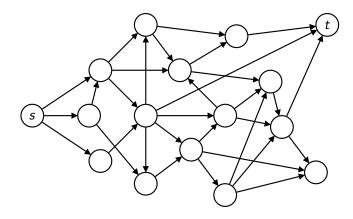
Conclusion

Motivation

Results

Conclusion

Linear network coding



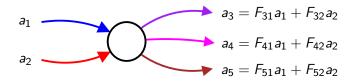
Mode

Results

Conclusion

Linear network coding

• On each node: output is a linear combination of the input



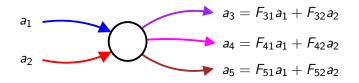
Mode

Results

Conclusion

Linear network coding

• On each node: output is a linear combination of the input

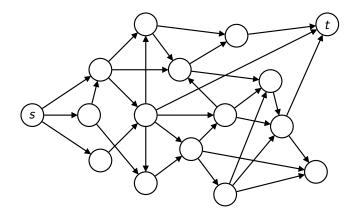


• Alphabet: finite field \mathbb{F}_q

Results

Conclusion

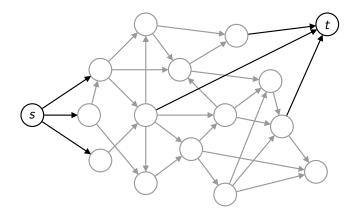
End-to-end approach



Results

Conclusion

End-to-end approach



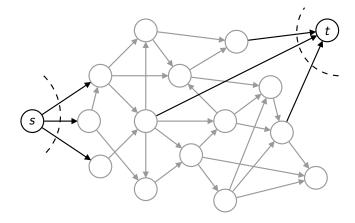
Nóbrega, Uchôa-Filho, Silva - On the Capacity of Multiplicative Finite-Field Matrix Channels

3/15

Results

Conclusion

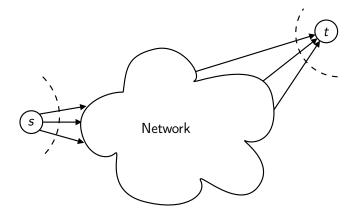
End-to-end approach



Results

Conclusion

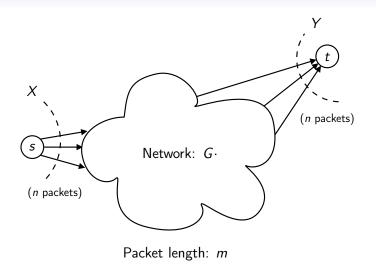
End-to-end approach



Results

Conclusion

End-to-end approach



Nóbrega, Uchôa-Filho, Silva - On the Capacity of Multiplicative Finite-Field Matrix Channels

3/15

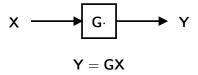
Motivation

Results

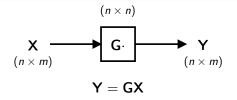
Conclusion

Channel model

Multiplicative finite-field matrix channels



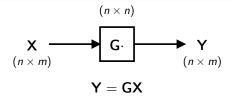
Multiplicative finite-field matrix channels



Nóbrega, Uchôa-Filho, Silva — On the Capacity of Multiplicative Finite-Field Matrix Channels

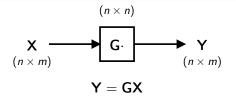
4/15

Multiplicative finite-field matrix channels



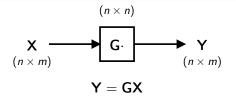
• Probabilistic model: matrices are random variables (bold)

Multiplicative finite-field matrix channels



- Probabilistic model: matrices are random variables
- DMC defined by $(\mathcal{X}, p(Y|X), \mathcal{Y})$

Multiplicative finite-field matrix channels

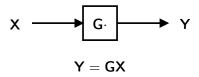


- Probabilistic model: matrices are random variables
- DMC defined by $(\mathcal{X}, p(Y|X), \mathcal{Y})$
- p(Y|X) induced by p(G) through the channel law:

$$p(Y|X) = \sum_{G} p(G) \operatorname{1}[Y = GX]$$

Conclusion

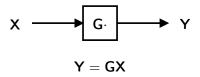
Previous works



- G full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv **G** uniform [Jafari et al., 2011]

Conclusion

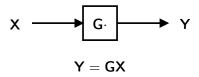
Previous works



- G full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv **G** uniform [Jafari et al., 2011]
 - Too particular: may not be accurate

Conclusion

Previous works



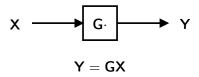
- G full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv **G** uniform [Jafari et al., 2011]

• Too particular: may not be accurate

• G with arbitrary distribution [Yang et al., 2010]

Conclusion

Previous works



- G full-rank, uniform [Silva et al., 2010]
- **G** with uniform i.i.d. entries \equiv **G** uniform [Jafari et al., 2011]

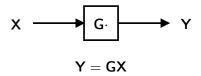
• Too particular: may not be accurate

- G with arbitrary distribution [Yang et al., 2010]
 - Too general: complex channel description (q^{nm})

Results

Conclusion

This work

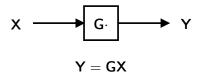


• G uniform given rank (u.g.r.) \triangleq matrices with same rank are equiprobable

Results

Conclusion

This work

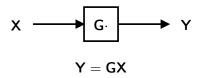


- G uniform given rank (u.g.r.) \triangleq matrices with same rank are equiprobable
 - Simple channel description (n+1)

Results

Conclusion

This work

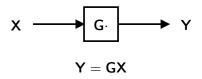


- G uniform given rank (u.g.r.) \triangleq matrices with same rank are equiprobable
 - Simple channel description (n+1)
 - Keeps the essence of non-coherence

Results

Conclusion

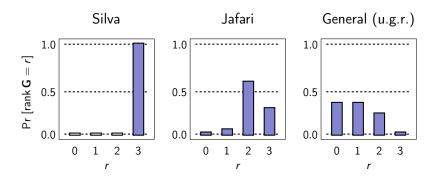
This work



- **G** uniform given rank (u.g.r.) \triangleq matrices with same rank are equiprobable
 - Simple channel description (n+1)
 - Keeps the essence of non-coherence
 - Serves a lower bound on the capacity for the general case:

Comparison

• Example: **G** of dimension 3×3 , binary field



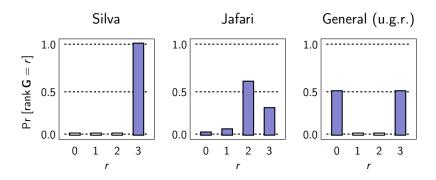
(Model)

Results

Conclusion

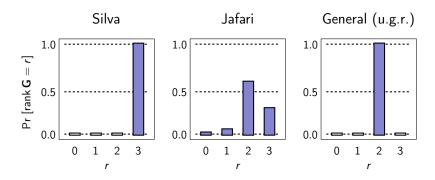
Comparison

• Example: **G** of dimension 3×3 , binary field



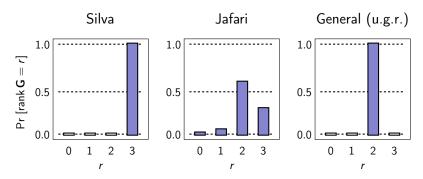
Comparison

• Example: **G** of dimension 3×3 , binary field



Comparison

• Example: ${\boldsymbol{G}}$ of dimension 3 \times 3, binary field



• Rank distribution depends on the topology, the link erasure probabilities, and the linear combinations

Results

Conclusion

Our results

 $\label{eq:constraint} \begin{array}{ll} \mathbf{Y} = \mathbf{G} \mathbf{X} \\ \mathbf{u} \triangleq \mathsf{rank} \, \mathbf{X} & \mathbf{v} \triangleq \mathsf{rank} \, \mathbf{Y} & \mathbf{r} \triangleq \mathsf{rank} \, \mathbf{G} \end{array}$

 $\label{eq:constraint} \begin{array}{ll} \mathbf{Y} = \mathbf{G} \mathbf{X} \\ \mathbf{u} \triangleq \mathsf{rank} \, \mathbf{X} & \mathbf{v} \triangleq \mathsf{rank} \, \mathbf{Y} & \mathbf{r} \triangleq \mathsf{rank} \, \mathbf{G} \end{array}$

Channel transition probability

$$p(Y|X) = \begin{cases} \frac{p(v|u)}{|\mathcal{T}_q^{n \times u, v}|}, & \text{if } \langle Y \rangle \subseteq \langle X \rangle, \\ 0, & \text{else.} \end{cases}$$

 $\label{eq:constraint} \begin{array}{ll} \mathbf{Y} = \mathbf{G} \mathbf{X} \\ \mathbf{u} \triangleq \mathsf{rank} \, \mathbf{X} & \mathbf{v} \triangleq \mathsf{rank} \, \mathbf{Y} & \mathbf{r} \triangleq \mathsf{rank} \, \mathbf{G} \end{array}$

Channel transition probability

$$p(Y|X) = \begin{cases} \frac{p(v|u)}{|\mathcal{T}_q^{n \times u, v}|}, & \text{if } \langle Y \rangle \subseteq \langle X \rangle, \\ 0, & \text{else.} \end{cases}$$

• p(v|u): rank transition probability:

$$p(v|u) = \sum_{r=0}^{n} p(r) \frac{|\mathcal{T}_q^{n \times u, v}|}{|\mathcal{T}_q^{n \times n, r}|} \phi_q(n; u, n, v, r),$$

calculated using a combinatorial result [Brawley and Carlitz, 1973]

Nóbrega, Uchôa-Filho, Silva — On the Capacity of Multiplicative Finite-Field Matrix Channels

8/15

 $\label{eq:constraint} \begin{array}{ll} \mathbf{Y} = \mathbf{G} \mathbf{X} \\ \mathbf{u} \triangleq \mathsf{rank} \, \mathbf{X} & \mathbf{v} \triangleq \mathsf{rank} \, \mathbf{Y} & \mathbf{r} \triangleq \mathsf{rank} \, \mathbf{G} \end{array}$

Channel transition probability

$$p(Y|X) = egin{cases} rac{p(v|u)}{|\mathcal{T}_q^{n imes u, v}|}, & ext{if } \langle Y
angle \subseteq \langle X
angle, \ 0, & ext{else.} \end{cases}$$

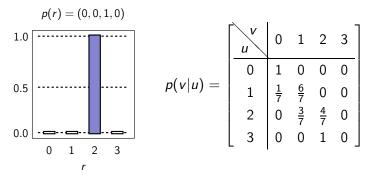
•
$$p(Y|X)$$
: $q^{nm} \times q^{nm}$ matrix

•
$$p(v|u)$$
: $(n+1) imes (n+1)$ matrix

Rank transition probability

 $\label{eq:constraint} \begin{array}{ll} \mathbf{Y} = \mathbf{G} \mathbf{X} \\ \mathbf{u} \triangleq \mathsf{rank} \, \mathbf{X} & \mathbf{v} \triangleq \mathsf{rank} \, \mathbf{Y} & \mathbf{r} \triangleq \mathsf{rank} \, \mathbf{G} \end{array}$

• Example: **G** of dimension 3×3 , binary field



Motivation

Model

Results

Conclusion

Channel capacity

• Maximization split in two stages:

$$C = \max_{p(X)} I(\mathbf{X}; \mathbf{Y})$$
$$= \max_{p(u)} \max_{p(X): p(u)} I(\mathbf{X}; \mathbf{Y})$$

Motivation

Model

Results

Conclusion

Channel capacity

• Maximization split in two stages:

$$C = \max_{p(X)} I(\mathbf{X}; \mathbf{Y})$$
$$= \max_{p(u)} \max_{p(X): p(u)} I(\mathbf{X}; \mathbf{Y})$$

Inner stage: Solved, max achieved with u.g.r. input

$$\max_{p(X):p(u)} I(\mathbf{X};\mathbf{Y}) = \sum_{v} p(v) \log_q \frac{a_v}{p(v)} - \sum_{u} b_u p(u) \triangleq I^*(p(u))$$

Results

Conclusion

Channel capacity

Maximization split in two stages:

$$C = \max_{p(X)} I(\mathbf{X}; \mathbf{Y})$$
$$= \max_{p(u)} \max_{p(X): p(u)} I(\mathbf{X}; \mathbf{Y})$$

Inner stage: Solved, max achieved with u.g.r. input

$$\max_{p(X):p(u)} I(\mathbf{X};\mathbf{Y}) = \sum_{v} p(v) \log_q \frac{a_v}{p(v)} - \sum_{u} b_u p(u) \triangleq I^*(p(u))$$

Outer stage: No closed-form solution

$$\max_{p(u)} I^*(p(u)) = \text{convex optimization problem}$$

(Results)

Conclusion

Channel capacity

Original problem

$$C = \max_{p(X)} I(p(X))$$

Convex optimization on q^{nm} variables

Results

Conclusion

Channel capacity

Original problem

$$C = \max_{p(X)} I(p(X))$$

Convex optimization on q^{nm} variables

New problem

$$C = \max_{p(u)} I^*(p(u))$$

Convex optimization on n + 1 variables

Results

Conclusion

Channel capacity

Original problem

$$C = \max_{p(X)} I(p(X))$$

Convex optimization on q^{nm} variables

Problems are equivalent

New problem

$$C = \max_{p(u)} I^*(p(u))$$

Convex optimization on n + 1 variables

Results

Conclusion

Upper bound

#1 – Actual optimization problem $C = \max_{p(u)} I^*(p(u))$ subject to $p(0) + \ldots + p(n) = 1 \quad \forall u : p(u) \ge 0$

Results

Conclusion

Upper bound

#1 - Actual optimization problem $C = \max_{p(u)} l^*(p(u))$ subject to $p(0) + \ldots + p(n) = 1 \quad \forall u : p(u) \ge 0$

#2 – Modified optimization problem $C = \max_{p(u)} l^*(p(u))$ subject to $p(0) + \ldots + p(n) = 1 \quad \forall u : p(u) \ge 0$

Results

Conclusion

Upper bound

#1 – Actual optimization problem $C = \max_{p(u)} l^*(p(u))$ subject to $p(0) + \ldots + p(n) = 1 \quad \forall u : p(u) \ge 0$

Problems are **not** equivalent

#2 – Modified optimization problem $C = \max_{p(u)} I^*(p(u))$ subject to $p(0) + \ldots + p(n) = 1 \quad \forall u : p(u) \ge 0$

Results

Conclusion

Upper bound

• Exact solution for #2:

$$ilde{C} = \log_q \sum_{v=0}^n |\mathcal{T}_q^{n imes m, v}| q^{-c_v}$$

where c_v 's are the solution of a triangular linear system of equations

Results

Conclusion

Upper bound

• Exact solution for #2:

$$ilde{C} = \log_q \sum_{v=0}^n |\mathcal{T}_q^{n imes m, v}| q^{-c_v}$$

where c_v 's are the solution of a triangular linear system of equations

• Upper bound: $C \leq \tilde{C}$

Results

Conclusion

Upper bound

• Exact solution for #2:

$$ilde{C} = \log_q \sum_{v=0}^n |\mathcal{T}_q^{n imes m, v}| q^{-c_v}$$

where c_v 's are the solution of a triangular linear system of equations

- Upper bound: $C \leq \tilde{C}$
- Sometimes this is also the solution for #1!

Results

Conclusion

Constant-rank input

• Input matrices limited to have rank u

Results

Conclusion

Constant-rank input

• Input matrices limited to have rank u

Rank-*u* capacity $C_u = \sum_{v=0}^{n} p(v|u) \log_q \frac{\begin{bmatrix} m \\ v \end{bmatrix}_q}{\begin{bmatrix} u \\ v \end{bmatrix}_q}$

Results

Conclusion

Constant-rank input

• Input matrices limited to have rank u

Rank-*u* capacity $C_u = \sum_{v=0}^{n} p(v|u) \log_q \frac{\begin{bmatrix} m \\ v \end{bmatrix}_q}{\begin{bmatrix} u \\ v \end{bmatrix}_q}$

• Asymptotically optimal: $\max_{u} C_{u} \leq C \leq \max_{u} C_{u} + \log_{q} n$

Results

Conclusion

Constant-rank input

• Input matrices limited to have rank u

Rank-*u* capacity $C_u = \sum_{v=0}^{n} p(v|u) \log_q \frac{\begin{bmatrix} m \\ v \end{bmatrix}_q}{\begin{bmatrix} u \\ v \end{bmatrix}_q}$

• Asymptotically optimal: $\max_{u} C_{u} \leq C \leq \max_{u} C_{u} + \log_{q} n$

Unconstrained capacity, for $q \rightarrow \infty$

$$C = C_{u^*}$$

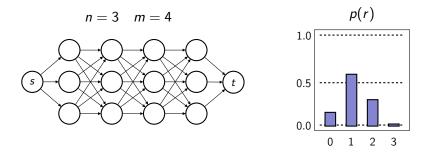
Results

Conclusion

An example

"Trellis network"

Pr[erasure] = 10% for each link, binary field

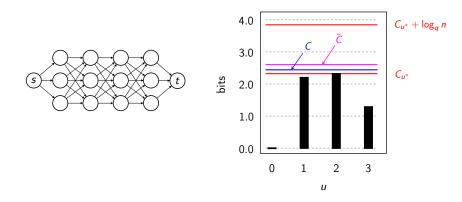


(Results)

Conclusion

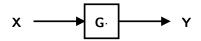
An example

"Trellis network"



Communication via subspaces

• The matrix channel:



Results

Conclusion

Communication via subspaces

• The matrix channel:



• The subspace channel:

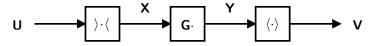


Communication via subspaces

• The matrix channel:



• The subspace channel:



• Communication via subpaces is optimal for **G** u.g.r.:

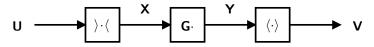
 $I(\mathbf{X};\mathbf{Y}) = I(\mathbf{U};\mathbf{V})$

Communication via subspaces

• The matrix channel:



• The subspace channel:



• Communication via subpaces is optimal for **G** u.g.r.:

 $I(\mathbf{X};\mathbf{Y}) = I(\mathbf{U};\mathbf{V})$

• Approach: "grouping of letters" in a DMC

Results

Conclusion

• U.g.r. transfer matrix: reasonable model for non-coherent networks

Review

- U.g.r. transfer matrix: reasonable model for non-coherent networks
- Capacity: optimization problem, bounds, special cases

Review

- U.g.r. transfer matrix: reasonable model for non-coherent networks
- Capacity: optimization problem, bounds, special cases
- Communication via subspaces: still optimal

15/15

Review

- U.g.r. transfer matrix: reasonable model for non-coherent networks
- Capacity: optimization problem, bounds, special cases
- Communication via subspaces: still optimal
- Main open problem: codes

Results

(Conclusion)

Thank you! Roberto W. Nóbrega rwnobrega@eel.ufsc.br