Communication over Finite-Ring Matrix Channels

Chen Feng¹ Roberto W. Nóbrega² Frank R. Kschischang¹ Danilo Silva²

¹Department of Electrical and Computer Engineering University of Toronto, Canada

²Department of Electrical Engineering Federal University of Santa Catarina (UFSC), Brazil

IEEE International Symposium on Information Theory Istanbul, Turkey, July 12, 2013

Random Linear Network Coding with Errors

- **Transmitter** injects packets (row vectors over \mathbb{F}_q)
- Intermediate nodes forward random \mathbb{F}_q -linear combinations of packets
- **Errors** may also be injected, which randomly mix with the legitimate packets
- (Each) receiver gathers as many packets as possible

At any particular receiver:

$$
Y = AX + Z
$$

where \overline{A} is a transfer matrix, and \overline{Z} is some error matrix.

Random-linear network-coding with errors can be formulated as:

$$
Y=AX+Z,
$$

where

- all matrices are over \mathbb{F}_q ;
- \bullet X, A, and Z are independent;

• channel law is specified by the distributions of A and Z .

Finite-Field Matrix Channels (Cont'd)

[SKK10]¹ considered three variants of $Y = AX + Z$ over \mathbb{F}_q .

- $\bullet Y = AX: A$ is invertible, drawn uniformly at random exact capacity, code design, encoding-decoding
- $2 Y = X + W$: W has rank t, drawn uniformly at random exact capacity, code design, encoding-decoding
- $3 Y = A(X + W)$: A invertible, W rank t, both uniform capacity bounds, code design, encoding-decoding

¹Silva, Kschischang, Kötter, "Communication over Finite-Field Matrix Channels," IEEE Trans. Inf. Theory, vol. 56, pp. 1296–1305, Mar. 2010.

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

²Nazer and Gastpar, "Compute-and-Forward: Harnessing Interference through Structured Codes," IEEE Trans. Inf. Theory, vol. 57, pp. 6463-6486, Oct. 2011.

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

The motivation comes from physical-layer network coding, in particular, compute-and-forward.²

²Nazer and Gastpar, "Compute-and-Forward: Harnessing Interference through Structured Codes," IEEE Trans. Inf. Theory, vol. 57, pp. 6463-6486, Oct. 2011.

Finite-Ring Matrix Channels: Packet Space

uncoded modulation:

•
$$
L^2
$$
-QAM $\Rightarrow R = \mathbb{Z}_L[i]$, packet space = R^m , where
 $\mathbb{Z}_L[i] \triangleq \{a + bi : a, b \in \mathbb{Z}_L\}.$

nested lattice codes:

for many practical constructions, we have $^3\mathpunct:$ $R = \, T/\langle \pi^{t_m} \rangle$, packet space $= \, T/\langle \pi^{t_1} \rangle \times \cdots \times \, T/\langle \pi^{t_m} \rangle$ for some $t_1 \leq \cdots \leq t_m$, where T is a PID.

In all cases, the packet space is R^{μ} for some finite chain ring R, where

$$
R^{\mu} \triangleq \underbrace{R \times \cdots \times R}_{\mu_1} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_2 - \mu_1} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_s - \mu_{s-1}}.
$$

³F., Silva, Kschischang, "An Algebraic Approach to Physical-Layer Network Coding," to appear in IEEE Trans. Inf. Theory.

Finite-Ring Matrix Channels: Packet Space

Example:
$$
R = \mathbb{Z}_4
$$
, $\mu = (3, 5)$, $R^{\mu} = \mathbb{Z}_4^3 \times (2\mathbb{Z}_4)^2$
\n**w** = $\begin{bmatrix} 1 & 2 & 3 & 0 & 2 \end{bmatrix} \in R^{\mu}$
\n**w** = $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}$
\nSo, the packet space R^{μ} can be visualized as $\begin{bmatrix} * & * & * & * \\ * & * & * & * & * \end{bmatrix}$

In all cases, the packet space is R^{μ} for some finite chain ring R, where

$$
R^{\mu} \triangleq \underbrace{R \times \cdots \times R}_{\mu_1} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_2 - \mu_1} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_s - \mu_{s-1}}.
$$

First warmup problem

The multiplicative matrix channel (MMC):

 $Y = AX$

where

- $X, Y \in R^{n \times \mu}$;
- A: invertible, uniform;
- \bullet A and X are independent.

MMC: Review of [SKK10]

When R reduces to \mathbb{F}_q and $R^{n\times \mu}$ reduces to $\mathbb{F}_q^{n\times m}$:

Exact capacity: A preserves the row span, so

$$
C_{\text{MMC}} = \log_q (\# \text{ of subspaces of } \mathbb{F}_q^m)
$$

² Capacity-achieving code: reduced row echelon form (RREF) Efficient encoding-decoding:

Theorem

The capacity of the MMC, in q -ary symbols per channel use, is

 $C_{\text{MMC}} = \log_q(\text{# of submodules of } R^{\mu}).$

 $\#$ of submodules of R^μ is $\sum_{\lambda \preceq n, \mu} \big[\begin{smallmatrix} \mu \ \lambda \end{smallmatrix}$ $\left[\begin{smallmatrix} \mu \ \lambda \end{smallmatrix}\right]_q$ (see, e.g., [HL00] $^3\})$, where

$$
\begin{bmatrix} \mu \\ \lambda \end{bmatrix}_q = \prod_{i=1}^s q^{(\mu_i - \lambda_i)\lambda_{i-1}} \begin{bmatrix} \mu_i - \lambda_{i-1} \\ \lambda_i - \lambda_{i-1} \end{bmatrix}_q,
$$

and $\binom{m}{k}$ $\binom{m}{k}_q$ is the Gaussian coefficient. • note: $\lambda \prec n, \mu$ means $\forall i, \lambda_i \leq n, \mu_i$

³Honold and Landjev, "Linear Codes over Finite Chain Rings," The Electronic J. of Combinatorics, vol. 7, 2000.

MMC: Capacity-Achieving Code Design

code design problem \Rightarrow an appropriate generalization of RREF

The presence of zero divisors complicates the matters...

- **•** Over a field, two matrices in echelon form with the same row span will have the same number of nonzero rows—the rank.
- Over a chain ring, this is not the case.

For example, the matrices

$$
\begin{bmatrix} 2 & 1 & 1 & 2 \ 0 & 0 & 2 & 2 \ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 & 1 & 2 \ 0 & 4 & 0 & 4 \ 0 & 0 & 2 & 2 \end{bmatrix} \text{ over } \mathbb{Z}_8
$$

have the same row span but not the same number of nonzero rows. So, generalization of RREF seems non-trivial.

MMC: Capacity-Achieving Code Design

code design problem \Rightarrow an appropriate generalization of RREF

There are two matrix canonical forms that generalize RREF:

- **•** Fuller, "A canonical set for matrices over a principal ideal ring modulo m ," Canad. J. Math, 54–59, 1954.
- Howell, "Spans in the module \mathbb{Z}_m^s ," Linear and Multilinear Algebra, 19:1, 67–77, 1986.

MMC: Capacity-Achieving Code Design

code design problem \Rightarrow an appropriate generalization of RREF

There are two matrix canonical forms that generalize RREF:

- **•** Fuller, "A canonical set for matrices over a principal ideal ring modulo m ," Canad. J. Math, 54–59, 1954.
- Howell, "Spans in the module \mathbb{Z}_m^s ," Linear and Multilinear Algebra, 19:1, 67–77, 1986.

Example: the matrices

$$
\begin{bmatrix} 2 & 1 & 1 & 2 \ 0 & 0 & 2 & 2 \ 0 & 0 & 0 & 0 \end{bmatrix}
$$
 and
$$
\begin{bmatrix} 2 & 1 & 1 & 2 \ 0 & 4 & 0 & 4 \ 0 & 0 & 2 & 2 \end{bmatrix}
$$
 over \mathbb{Z}_8

are Fuller and Howell canonical forms, respectively. For details, see our paper and/or Kiermaier's thesis (in German).

MMC: Efficient Encoding-Decoding

First attempt:

- **•** Encoding: transmit a row canonical form (RCF)
- Decoding: reduction to RCF

The decoding complexity is $\mathcal{O}(n^2m)$, but the encoding is hard.

Solution:

- **Encoding: transmit a principal RCF**
- Decoding: reduction to RCF

The encoding complexity is $\mathcal{O}(nm)$. Principal RCFs occupy a significant portion of all RCFs.

Hence,

The simple coding scheme asymptotically achieves the capacity.

Additive Matrix Channel

Second warmup problem

The additive matrix channel (AMC):

 $Y = X + W$

where

- $X, Y \in R^{n \times \mu}$;
- \bullet W: shape τ , uniform;
- \bullet W and X are independent.

Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: $\mu = (3, 5)$ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: $\mu = (3, 5)$ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The shape of a module generalizes the concept of dimension.

Theorem

For any finite R-module M, there is a unique μ such that $M \cong R^{\mu}$.

We call μ the shape of M, and write $\mu =$ shape M.

Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: $\mu = (3, 5)$ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

The shape of a module generalizes the concept of dimension.

Theorem

For any finite R-module M, there is a unique μ such that $M \cong R^{\mu}$.

We call μ the shape of M, and write $\mu =$ shape M.

The shape of a matrix generalizes the concept of rank.

Definition

The shape of a matrix A is defined as the shape of the row span of A, i.e., shape $A =$ shape(row(A)).

AMC: Review of [SKK10]

When R reduces to \mathbb{F}_q and $R^{n\times \mu}$ reduces to $\mathbb{F}_q^{n\times m}$, shape τ reduces to rank t:

1 Exact capacity: a discrete symmetric channel

 $C_{\text{AMC}} = nm - \log_q (\# \text{ of matrices of rank } t \text{ in } \mathbb{F}_q^{n \times m})$

Capacity-approaching code: ν is a parameter

- Efficient encoding-decoding:
	- encoding: error trapping
	- decoding: matrix completion

The AMC is an example of a discrete symmetric channel.

Theorem

The capacity of the AMC, in q -ary symbols per channel use, is

$$
C_{\text{AMC}} = \log_q |R^{n \times \mu}| - \log_q |\mathcal{T}_{\tau}(R^{n \times \mu})|.
$$

We need to derive new enumeration results:

\n- \n
$$
|R^{n \times \mu}| = q^{n(\mu_1 + \cdots + \mu_s)}
$$
\n
\n- \n $|T_{\tau}(R^{n \times \mu})| = \left[\begin{array}{c} \mu \\ \tau \end{array}\right]_q |R^{n \times \tau}| \prod_{i=0}^{\tau_s - 1} (1 - q^{i - n})$, where\n
\n

$$
\begin{bmatrix} \mu \\ \tau \end{bmatrix}_q = \prod_{i=1}^s q^{(\mu_i - \tau_i)\tau_{i-1}} \begin{bmatrix} \mu_i - \tau_{i-1} \\ \tau_i - \tau_{i-1} \end{bmatrix}_q
$$

.

AMC: Capacity-Approaching Code Design

code design problem \Rightarrow a generalization of error-trapping

Solution: layered error-trapping

Note that every matrix in $R^{n \times \mu}$ admits a π -adic decomposition.

Example: $R = \mathbb{Z}_8$, $n = 6$, $\mu = (4, 6, 8)$, $X = X_0 + 2X_1 + 4X_2$

AMC: Capacity-Approaching Code Design

code design problem \Rightarrow a generalization of error-trapping

Solution: layered error-trapping

Note that every matrix in $R^{n \times \mu}$ admits a π -adic decomposition.

Example: $R = \mathbb{Z}_8$, $n = 6$, $\mu = (4, 6, 8)$, $X = X_0 + 2X_1 + 4X_2$

after error-trapping...

AMC: Efficient Encoding-Decoding

- Encoding: layered error-trapping, $\mathcal{O}(nm)$ complexity
- Decoding: multistage matrix completion, $\mathcal{O}(n^2m)$ complexity

Example: $R = \mathbb{Z}_8$, $X = X_0 + 2X_1 + 4X_2$. Note that

$$
Y = X + W = X_0 + 2X_1 + 4X_2 + W.
$$

1 Take mod 2:
$$
[Y]_2 = X_0 + [W]_2
$$
.

- 2 Decode X_0 by completing $[W]_2$.
- 3 Clear X_0 from $Y: Y' = Y X_0 = 2X_1 + 4X_2 + W$.
- **1** Take mod 4: $[Y']_4 = 2X_1 + [W]_4$.
- **5** Decode $2X_1$ by completing $[W]_4$.
- **0** Clear X_1 from Y' : $Y'' = Y' 2X_1 = 4X_2 + W$.
- \overline{D} We have $Y''=4X_2+W$.
- Decode $4X_2$ by completing W.

Additive-Multiplicative Matrix Channel

Now to the main event:

The additive-multiplicative matrix channel (AMMC):

 $Y = A(X + W)$

where

- $X, Y \in R^{n \times \mu}$;
- A: invertible, uniform;
- W: shape τ , uniform;
- \bullet A, X and W are independent.

Remark: This model is statistically identical to $Y = AX + Z$.

AMMC: Upper Bound on Capacity

Theorem

The capacity of the AMMC, in q-ary symbols per channel use, is upper-bounded by

$$
C_{\text{AMMC}} \leq \sum_{i=1}^{s} (\mu_i - \xi_i) \xi_i + \sum_{i=1}^{s} (n - \mu_i) \tau_i + 2s \log_q 4 + \log_q \binom{n+s}{s}
$$

+ $\log_q \binom{\tau_s + s}{s} - \log_q \prod_{i=0}^{\tau_s - 1} (1 - q^{i - n}), \text{ where } \xi_i = \min\{n, \lfloor \mu_i/2 \rfloor\}.$

In particular, when $\mu \succeq 2n$, the upper bound reduces to

$$
C_{\text{AMMC}} \leq \sum_{i=1}^{s} (n - \tau_i)(\mu_i - n) + 2s \log_q 4 + \log_q {n+s \choose s} + \log_q {(\tau_s+s) \choose s} - \log_q \prod_{i=0}^{\tau_s-1} (1 - q^{i-n}).
$$

AMMC: Coding Scheme

coding scheme $=$ principal RCFs $+$ layered error-trapping

However, the combination turns out to be non-trivial. Hence, we focus on the special case when $\tau = (t, \ldots, t)$.

• Encoding:

• Decoding: upon receiving $Y = A(X + W)$, the decoder simply computes the RCF of Y, which exposes \overline{X} with high probability.

This simple coding scheme asymptotically achieves the capacity for the special case when $\tau = (t, \ldots, t)$ and $\mu \succeq 2n$.

Conclusion

• studied three variants of finite-ring matrix channels

- exact capacities and an upper bound
- **•** capacity-achieving codes
- **•** efficient encoding-decoding methods
- **•** refined some linear algebra tools over finite chain rings
	- row canonical form with a new proof for uniqueness
	- **•** construction of principal RCFs
	- o new enumeration results
- o open problems:
	- Can we handle $Y = A(X + W)$ for general shapes?
	- What if A is not invertible?

Finite Chain Rings in One Slide

Finite Chain Rings in One Slide

Let R be a finite chain ring, where

- \bullet $\langle \pi \rangle$ is the unique maximal ideal,
- **q** is the order of the residue field $R/\langle\pi\rangle$,
- \bullet s is the number of proper ideals.

Notation: (q, s) chain ring.

Finite Chain Rings in One Slide

Let R be a finite chain ring, where

- \bullet $\langle \pi \rangle$ is the unique maximal ideal,
- **q** is the order of the residue field $R/\langle \pi \rangle$,
- **s** is the number of proper ideals.

Notation: (q, s) chain ring.

π -adic decomposition

Let $\mathcal{R}(R,\pi)$ be a complete set of residues with respect to π . Then every element $r \in R$ can be written uniquely as

$$
r = r_0 + r_1 \pi + r_2 \pi^2 + \cdots + r_{s-1} \pi^{s-1}
$$

where $r_i \in \mathcal{R}(R,\pi)$.

Definition

The degree, deg(r), of a nonzero element $r \in R^*$, where

$$
r = r_0 + r_1 \pi + \cdots + r_{s-1} \pi^{s-1},
$$

is defined as the *least* index *j* for which $r_i \neq 0$.

- by convention, deg(0) = s
- o units have degree zero
- **e** elements of the same degree are associates
- a divides b if and only if deg(a) \leq deg(b)

Row Canonical Form

Definition

A matrix A is in row canonical form if it satisfies the following conditions.

- **1** Nonzero rows of A are above any zero rows.
- $\overline{\textbf{2}}$ The pivot of a row is of the form π^ℓ , and is the leftmost entry of the least degree.
- \bullet For every pivot (say π^ℓ), all entries below and in the same column as the pivot are zero, and all entries above and in the same column as the pivot are residues of $\pi^\ell.$
- **4** If A has two pivots of the same degree, the one that occurs earlier is above the one that occurs later. If A has two pivots of different degree, the one with smaller degree is above the one with larger degree.

For example, over \mathbb{Z}_8 . $A =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ 0 2 0 $\overline{1}$ $\bar{2}$ 2 0 0 $0 \t0 \t\overline{2} \t0$ $0 \bar{4} 0 0$ 0 0 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$

is in row canonical form.

Reduction to Row Canonical Form: Example

Reduction is a variant of Gaussian elimination. An example over \mathbb{Z}_8 :

$$
A = \begin{bmatrix} 4 & 6 & 2 & \bar{1} \\ 0 & 0 & 0 & 2 \\ 2 & 4 & 6 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix} \rightarrow A_1 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 0 & 4 & 4 & 0 \\ \bar{6} & 6 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix} \rightarrow A_2 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 0 & 4 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix}
$$

$$
A'_1 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ \bar{2} & 2 & 4 & 0 \\ 0 & 4 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix} \rightarrow A_2 = \begin{bmatrix} 0 & 2 & 2 & 1 \\ 2 & 2 & 4 & 0 \\ 0 & \bar{4} & 4 & 0 \\ 0 & 4 & 4 & 0 \end{bmatrix} \rightarrow A_3 = \begin{bmatrix} 0 & 2 & 2 & \bar{1} \\ \bar{2} & 2 & 4 & 0 \\ 0 & \bar{4} & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$
which is in row canonical form.

Row canonical form is not necessarily an echelon form!

Construction of Principal RCFs

Definition

A row canonical form in $\mathcal{T}_{\kappa}(R^{n\times \mu})$ is called *principal* if its diagonal entries d_1, d_2, \ldots, d_r ($r = \min\{n, m\}$) have the following form:

$$
d_1,\ldots,d_r=\underbrace{1,\ldots,1}_{\kappa_1},\underbrace{\pi,\ldots,\pi}_{\kappa_2-\kappa_1},\ldots,\underbrace{\pi^{s-1},\ldots,\pi^{s-1}}_{\kappa_s-\kappa_{s-1}},\underbrace{0,\ldots,0}_{r-\kappa_s}.
$$

All principal RCFs in $\mathcal{T}_{\kappa}({R}^{n\times \mu})$ can be constructed via a π -adic decomposition $X = X_0 + \pi X_1 + \cdots + \pi^{s-1} X_{s-1}$.

Example: $s = 3$, $n = 6$, $\mu = (4, 6, 8)$, and $\kappa = (2, 3, 4)$

