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Random Linear Network Coding with Errors

Transmitter injects packets (row vectors over Fq)
Intermediate nodes forward random Fq-linear combinations of
packets
Errors may also be injected, which randomly mix with the
legitimate packets
(Each) receiver gathers as many packets as possible

At any particular receiver:

Y = AX + Z

where A is a transfer matrix, and Z is some error matrix.
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Finite-Field Matrix Channels

A Matrix Channel

× +X Y

A Z

Random-linear network-coding with errors can be formulated as:

Y = AX + Z ,

where

all matrices are over Fq;

X , A, and Z are independent;

channel law is specified by the distributions of A and Z .
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Finite-Field Matrix Channels (Cont’d)

[SKK10]1 considered three variants of Y = AX + Z over Fq.

1 Y = AX : A is invertible, drawn uniformly at random

exact capacity, code design, encoding-decoding

2 Y = X + W : W has rank t, drawn uniformly at random

exact capacity, code design, encoding-decoding

3 Y = A(X + W ): A invertible, W rank t, both uniform

capacity bounds, code design, encoding-decoding

1Silva, Kschischang, Kötter, “Communication over Finite-Field Matrix
Channels,” IEEE Trans. Inf. Theory, vol. 56, pp. 1296–1305, Mar. 2010.
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Finite-Ring Matrix Channels

Generalize from
finite-field matrix channels

to
finite-ring matrix channels.

Why?

The motivation comes from physical-layer network coding,
in particular, compute-and-forward.2

2Nazer and Gastpar, “Compute-and-Forward: Harnessing Interference through
Structured Codes,” IEEE Trans. Inf. Theory, vol. 57, pp. 6463–6486, Oct. 2011.
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Finite-Ring Matrix Channels: Packet Space

uncoded modulation:

L2-QAM ⇒ R = ZL[i ], packet space = Rm, where

ZL[i ] , {a + bi : a, b ∈ ZL}.

nested lattice codes:

for many practical constructions, we have3:
R = T/〈πtm〉, packet space = T/〈πt1〉 × · · · × T/〈πtm〉 for

some t1 ≤ · · · ≤ tm, where T is a PID.

In all cases, the packet space is Rµ for some finite chain ring R,
where

Rµ , R × · · · × R︸ ︷︷ ︸
µ1

×πR × · · · × πR︸ ︷︷ ︸
µ2−µ1

× · · · × πs−1R × · · · × πs−1R︸ ︷︷ ︸
µs−µs−1

.

3F., Silva, Kschischang, “An Algebraic Approach to Physical-Layer Network
Coding,” to appear in IEEE Trans. Inf. Theory.
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Finite-Ring Matrix Channels: Packet Space

Example: R = Z4, µ = (3, 5), Rµ = Z3
4 × (2Z4)2

w =
[
1 2 3 0 2

]
∈ Rµ

w =
[
1 0 1 0 0

]
+ 2

[
0 1 1 0 1

]
So, the packet space Rµ can be visualized as

∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

In all cases, the packet space is Rµ for some finite chain ring R,
where

Rµ , R × · · · × R︸ ︷︷ ︸
µ1

×πR × · · · × πR︸ ︷︷ ︸
µ2−µ1

× · · · × πs−1R × · · · × πs−1R︸ ︷︷ ︸
µs−µs−1

.
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Multiplicative Matrix Channel

First warmup problem

The multiplicative matrix channel (MMC):

×X Y

A

Y = AX

where

X ,Y ∈ Rn×µ;

A: invertible, uniform;

A and X are independent.
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MMC: Review of [SKK10]

When R reduces to Fq and Rn×µ reduces to Fn×m
q :

1 Exact capacity: A preserves the row span, so

CMMC = logq
(
# of subspaces of Fm

q

)
2 Capacity-achieving code: reduced row echelon form (RREF)
3 Efficient encoding-decoding:

encoding:

I data

n m − n

nX =

decoding: Gaussian elimination (reduction to RREF)
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MMC: Exact Capacity

Theorem

The capacity of the MMC, in q-ary symbols per channel use, is

CMMC = logq (# of submodules of Rµ) .

# of submodules of Rµ is
∑

λ�n,µ
[[
µ
λ

]]
q

(see, e.g., [HL00]3}), where

[[µ
λ

]]
q

=
s∏

i=1

q(µi−λi )λi−1

[
µi − λi−1
λi − λi−1

]
q

,

and
[m
k

]
q

is the Gaussian coefficient.

note: λ � n, µ means ∀i , λi ≤ n, µi

3Honold and Landjev, “Linear Codes over Finite Chain Rings,” The
Electronic J. of Combinatorics, vol. 7, 2000.
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MMC: Capacity-Achieving Code Design

code design problem ⇒ an appropriate generalization of RREF

The presence of zero divisors complicates the matters...

Over a field, two matrices in echelon form with the same row
span will have the same number of nonzero rows—the rank.

Over a chain ring, this is not the case.

For example, the matrices2 1 1 2
0 0 2 2
0 0 0 0

 and

2 1 1 2
0 4 0 4
0 0 2 2

 over Z8

have the same row span but not the same number of nonzero rows.
So, generalization of RREF seems non-trivial.
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MMC: Capacity-Achieving Code Design

code design problem ⇒ an appropriate generalization of RREF

There are two matrix canonical forms that generalize RREF:

Fuller, “A canonical set for matrices over a principal ideal ring modulo m,”
Canad. J. Math, 54–59, 1954.

Howell, “Spans in the module Zs
m,” Linear and Multilinear Algebra, 19:1,

67–77, 1986.

Example: the matrices2 1 1 2
0 0 2 2
0 0 0 0

 and

2 1 1 2
0 4 0 4
0 0 2 2

 over Z8

are Fuller and Howell canonical forms, respectively.
For details, see our paper and/or Kiermaier’s thesis (in German).
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MMC: Efficient Encoding-Decoding

First attempt:

Encoding: transmit a row canonical form (RCF)

Decoding: reduction to RCF

The decoding complexity is O(n2m), but the encoding is hard.

Solution:

Encoding: transmit a principal RCF

Decoding: reduction to RCF

The encoding complexity is O(nm).
Principal RCFs occupy a significant portion of all RCFs.

Hence,

The simple coding scheme asymptotically achieves the capacity.
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Additive Matrix Channel

Second warmup problem

The additive matrix channel (AMC):

+X Y

W

Y = X + W

where

X ,Y ∈ Rn×µ;

W : shape τ , uniform;

W and X are independent.
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Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: µ = (3, 5)
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

Rµ = R × · · · × R︸ ︷︷ ︸
µ1

×πR × · · · × πR︸ ︷︷ ︸
µ2−µ1

× · · · × πs−1R × · · · × πs−1R︸ ︷︷ ︸
µs−µs−1

.

The shape of a module generalizes the concept of dimension.

Theorem

For any finite R-module M, there is a unique µ such that M ∼= Rµ.

We call µ the shape of M, and write µ = shapeM.

The shape of a matrix generalizes the concept of rank.

Definition

The shape of a matrix A is defined as the shape of the row span of
A, i.e., shapeA = shape(row(A)).
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AMC: Review of [SKK10]

When R reduces to Fq and Rn×µ reduces to Fn×m
q , shape τ reduces

to rank t:

1 Exact capacity: a discrete symmetric channel

CAMC = nm − logq
(
# of matrices of rank t in Fn×m

q

)
2 Capacity-approaching code: v is a parameter

0 · · · 0

...

0
data

v m − v

v

n − v
X =

3 Efficient encoding-decoding:
encoding: error trapping
decoding: matrix completion
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AMC: Exact Capacity

The AMC is an example of a discrete symmetric channel.

Theorem

The capacity of the AMC, in q-ary symbols per channel use, is

CAMC = logq |Rn×µ| − logq |Tτ (Rn×µ)|.

We need to derive new enumeration results:

|Rn×µ| = qn(µ1+···+µs).

|Tτ (Rn×µ)| =
[[
µ
τ

]]
q
|Rn×τ |

∏τs−1
i=0 (1− qi−n), where

[[µ
τ

]]
q

=
s∏

i=1

q(µi−τi )τi−1

[
µi − τi−1
τi − τi−1

]
q

.
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AMC: Capacity-Approaching Code Design

code design problem ⇒ a generalization of error-trapping

Solution: layered error-trapping
Note that every matrix in Rn×µ admits a π-adic decomposition.
Example: R = Z8, n = 6, µ = (4, 6, 8), X = X0 + 2X1 + 4X2

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
µ1

X0 = 0

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

µ2

X1 = 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

µ3

X2 =

after error-trapping...

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
µ1

X0 = 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
µ2

X1 = 0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
µ3

X2 =
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AMC: Efficient Encoding-Decoding

Encoding: layered error-trapping, O(nm) complexity

Decoding: multistage matrix completion, O(n2m) complexity

Example: R = Z8, X = X0 + 2X1 + 4X2. Note that

Y = X + W = X0 + 2X1 + 4X2 + W .

1 Take mod 2: [Y ]2 = X0 + [W ]2.

2 Decode X0 by completing [W ]2.

3 Clear X0 from Y : Y ′ = Y − X0 = 2X1 + 4X2 + W .

4 Take mod 4: [Y ′]4 = 2X1 + [W ]4.

5 Decode 2X1 by completing [W ]4.

6 Clear X1 from Y ′: Y ′′ = Y ′ − 2X1 = 4X2 + W .

7 We have Y ′′ = 4X2 + W .

8 Decode 4X2 by completing W .
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Additive-Multiplicative Matrix Channel

Now to the main event:

The additive-multiplicative matrix channel (AMMC):

+ ×X Y

W A

Y = A(X + W )

where

X ,Y ∈ Rn×µ;

A: invertible, uniform;

W : shape τ , uniform;

A, X and W are independent.

Remark: This model is statistically identical to Y = AX + Z .
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AMMC: Upper Bound on Capacity

Theorem

The capacity of the AMMC, in q-ary symbols per channel use, is
upper-bounded by

CAMMC ≤
s∑

i=1

(µi − ξi )ξi +
s∑

i=1

(n − µi )τi + 2s logq 4 + logq
(n+s

s

)
+ logq

(
τs+s
s

)
− logq

τs−1∏
i=0

(1− qi−n), where ξi = min{n, bµi/2c}.

In particular, when µ � 2n, the upper bound reduces to

CAMMC ≤
s∑

i=1

(n − τi )(µi − n) + 2s logq 4

+ logq
(n+s

s

)
+ logq

(
τs+s
s

)
− logq

τs−1∏
i=0

(1− qi−n).
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AMMC: Coding Scheme

coding scheme = principal RCFs + layered error-trapping

However, the combination turns out to be non-trivial.
Hence, we focus on the special case when τ = (t, . . . , t).

Encoding:

0 · · · 0

...

0
X̄

v m − v

v

n − v
X =

Decoding: upon receiving Y = A(X + W ), the decoder simply
computes the RCF of Y , which exposes X̄ with high probability.

This simple coding scheme asymptotically achieves the capacity for
the special case when τ = (t, . . . , t) and µ � 2n.
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Conclusion

studied three variants of finite-ring matrix channels

exact capacities and an upper bound

capacity-achieving codes

efficient encoding-decoding methods

refined some linear algebra tools over finite chain rings

row canonical form with a new proof for uniqueness

construction of principal RCFs

new enumeration results

open problems:

Can we handle Y = A(X + W ) for general shapes?

What if A is not invertible?
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Back-up Slides
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Finite Chain Rings in One Slide

...

R = 〈π0〉

〈π〉

〈π2〉

〈πs−1〉

{0} = 〈πs〉

Let R be a finite chain ring, where

〈π〉 is the unique maximal ideal,

q is the order of the residue field R/〈π〉,
s is the number of proper ideals.

Notation: (q, s) chain ring.

π-adic decomposition

Let R(R, π) be a complete set of residues with
respect to π. Then every element r ∈ R can be
written uniquely as

r = r0 + r1π + r2π
2 + · · ·+ rs−1π

s−1

where ri ∈ R(R, π).
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Finite Chain Rings: Element Degree

Definition

The degree, deg(r), of a nonzero element r ∈ R∗, where

r = r0 + r1π + · · ·+ rs−1π
s−1,

is defined as the least index j for which rj 6= 0.

by convention, deg(0) = s

units have degree zero

elements of the same degree are associates

a divides b if and only if deg(a) ≤ deg(b)
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Row Canonical Form

Definition

A matrix A is in row canonical form if it satisfies
the following conditions.

1 Nonzero rows of A are above any zero rows.

2 The pivot of a row is of the form π`, and is
the leftmost entry of the least degree.

3 For every pivot (say π`), all entries below and
in the same column as the pivot are zero, and
all entries above and in the same column as
the pivot are residues of π`.

4 If A has two pivots of the same degree, the
one that occurs earlier is above the one that
occurs later. If A has two pivots of different
degree, the one with smaller degree is above
the one with larger degree.

For example,
over Z8,

A =


0 2 0 1̄
2̄ 2 0 0
0 0 2̄ 0
0 4̄ 0 0
0 0 0 0


is in row
canonical form.
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Reduction to Row Canonical Form: Example

Reduction is a variant of Gaussian elimination.
An example over Z8:

A =


4 6 2 1̄
0 0 0 2
2 4 6 1
2 0 2 1

→ A1 =


4 6 2 1
0 4 4 0
6̄ 6 4 0
6 2 0 0

→

A′1 =


4 6 2 1
2̄ 2 4 0
0 4 4 0
6 2 0 0

→ A2 =


0 2 2 1
2 2 4 0
0 4̄ 4 0
0 4 4 0

→

A3 =


0 2 2 1̄
2̄ 2 4 0
0 4̄ 4 0
0 0 0 0

 which is in row canonical form.

Row canonical form is not necessarily an echelon form!
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Construction of Principal RCFs

Definition

A row canonical form in Tκ(Rn×µ) is called principal if its diagonal
entries d1, d2, . . . , dr (r = min{n,m}) have the following form:

d1, . . . , dr =1, . . . , 1︸ ︷︷ ︸
κ1

, π, . . . , π︸ ︷︷ ︸
κ2−κ1

, . . . , πs−1, . . . , πs−1︸ ︷︷ ︸
κs−κs−1

, 0, . . . , 0︸ ︷︷ ︸
r−κs

.

All principal RCFs in Tκ(Rn×µ) can be constructed via a π-adic
decomposition X = X0 + πX1 + · · ·+ πs−1Xs−1.

Example: s = 3, n = 6, µ = (4, 6, 8), and κ = (2, 3, 4)

1 ∗ ∗
1 ∗ ∗

µ1

κ1

X0 =

0 ∗ ∗ ∗
0 ∗ ∗ ∗

1 ∗ ∗ ∗

µ2

κ2

X1 =

0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗

µ3

κ3

X2 =

27


