Communication over Finite-Ring Matrix Channels

Chen Feng¹ Roberto W. Nóbrega² Frank R. Kschischang¹ Danilo Silva²

¹Department of Electrical and Computer Engineering University of Toronto, Canada

²Department of Electrical Engineering Federal University of Santa Catarina (UFSC), Brazil

IEEE International Symposium on Information Theory Istanbul, Turkey, July 12, 2013

Random Linear Network Coding with Errors

- **Transmitter** injects *packets* (row vectors over \mathbb{F}_q)
- Intermediate nodes forward random $\mathbb{F}_q\text{-linear}$ combinations of packets
- Errors may also be injected, which randomly mix with the legitimate packets
- (Each) receiver gathers as many packets as possible

At any particular receiver:

$$Y = AX + Z$$

where A is a transfer matrix, and Z is some error matrix.

Random-linear network-coding with errors can be formulated as:

$$Y = AX + Z,$$

where

- all matrices are over \mathbb{F}_q ;
- X, A, and Z are independent;
- channel law is specified by the distributions of A and Z.

Finite-Field Matrix Channels (Cont'd)

 $[SKK10]^1$ considered three variants of Y = AX + Z over \mathbb{F}_q .

- Y = AX: A is invertible, drawn uniformly at random exact capacity, code design, encoding-decoding
- Y = X + W: W has rank t, drawn uniformly at random exact capacity, code design, encoding-decoding
- Y = A(X + W): A invertible, W rank t, both uniform capacity bounds, code design, encoding-decoding

¹Silva, Kschischang, Kötter, "Communication over Finite-Field Matrix Channels," *IEEE Trans. Inf. Theory*, vol. 56, pp. 1296–1305, Mar. 2010.

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

²Nazer and Gastpar, "Compute-and-Forward: Harnessing Interference through Structured Codes," *IEEE Trans. Inf. Theory*, vol. 57, pp. 6463–6486, Oct. 2011.

Generalize from finite-field matrix channels to finite-ring matrix channels.

Why?

The motivation comes from physical-layer network coding, in particular, **compute-and-forward**.²

²Nazer and Gastpar, "Compute-and-Forward: Harnessing Interference through Structured Codes," *IEEE Trans. Inf. Theory*, vol. 57, pp. 6463–6486, Oct. 2011.

Finite-Ring Matrix Channels: Packet Space

uncoded modulation:

•
$$L^2$$
-QAM $\Rightarrow R = \mathbb{Z}_L[i]$, packet space $= R^m$, where
 $\mathbb{Z}_L[i] \triangleq \{a + bi : a, b \in \mathbb{Z}_L\}.$

nested lattice codes:

• for many practical constructions, we have³: $R = T/\langle \pi^{t_m} \rangle$, packet space $= T/\langle \pi^{t_1} \rangle \times \cdots \times T/\langle \pi^{t_m} \rangle$ for some $t_1 \leq \cdots \leq t_m$, where T is a PID.

In all cases, the packet space is R^{μ} for some finite chain ring R, where

$$R^{\mu} \triangleq \underbrace{R \times \cdots \times R}_{\mu_{1}} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_{2}-\mu_{1}} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_{s}-\mu_{s-1}}.$$

³F., Silva, Kschischang, "An Algebraic Approach to Physical-Layer Network Coding," to appear in *IEEE Trans. Inf. Theory*.

Finite-Ring Matrix Channels: Packet Space

Example:
$$R = \mathbb{Z}_4$$
, $\mu = (3,5)$, $R^{\mu} = \mathbb{Z}_4^3 \times (2\mathbb{Z}_4)^2$
 $\mathbf{w} = \begin{bmatrix} 1 & 2 & 3 & 0 & 2 \end{bmatrix} \in R^{\mu}$
 $\mathbf{w} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}$
So, the packet space R^{μ} can be visualized as $\begin{array}{c} * & * & * \\ * & * & * & * \end{array}$

In all cases, the packet space is R^{μ} for some finite chain ring R, where

$$R^{\mu} \triangleq \underbrace{R \times \cdots \times R}_{\mu_1} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_2 - \mu_1} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_s - \mu_{s-1}}.$$

First warmup problem

The multiplicative matrix channel (MMC):

Y = AX

where

- $X, Y \in \mathbb{R}^{n \times \mu}$;
- A: invertible, uniform;
- A and X are independent.

MMC: Review of [SKK10]

When *R* reduces to \mathbb{F}_q and $R^{n \times \mu}$ reduces to $\mathbb{F}_q^{n \times m}$:

Exact capacity: A preserves the row span, so

$$\mathcal{C}_{\mathsf{MMC}} = \mathsf{log}_{m{q}}\left(\# ext{ of subspaces of } \mathbb{F}_{m{q}}^m
ight)$$

② Capacity-achieving code: reduced row echelon form (RREF)③ Efficient encoding-decoding:

decoding: Gaussian elimination (reduction to RREF)

Theorem

The capacity of the MMC, in q-ary symbols per channel use, is

 $C_{\text{MMC}} = \log_q (\# \text{ of submodules of } R^{\mu}).$

of submodules of R^{μ} is $\sum_{\lambda \preceq n,\mu} \begin{bmatrix} \mu \\ \lambda \end{bmatrix}_q$ (see, e.g., [HL00]³}), where

$$\begin{bmatrix} \mu \\ \lambda \end{bmatrix}_q = \prod_{i=1}^s q^{(\mu_i - \lambda_i)\lambda_{i-1}} \begin{bmatrix} \mu_i - \lambda_{i-1} \\ \lambda_i - \lambda_{i-1} \end{bmatrix}_q,$$

and ${m \brack k}_q$ is the Gaussian coefficient. • note: $\lambda \preceq n, \mu$ means $\forall i, \lambda_i \leq n, \mu_i$

³Honold and Landjev, "Linear Codes over Finite Chain Rings," *The Electronic J. of Combinatorics*, vol. 7, 2000.

MMC: Capacity-Achieving Code Design

code design problem \Rightarrow an appropriate generalization of RREF

The presence of zero divisors complicates the matters...

- Over a field, two matrices in echelon form with the same row span will have the same number of nonzero rows—the rank.
- Over a chain ring, this is not the case.

For example, the matrices

$$\begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 2 & 2 \end{bmatrix} \text{ over } \mathbb{Z}_8$$

have the same row span but not the same number of nonzero rows. So, generalization of RREF seems non-trivial.

MMC: Capacity-Achieving Code Design

code design problem \Rightarrow an appropriate generalization of RREF

There are two matrix canonical forms that generalize RREF:

- Fuller, "A canonical set for matrices over a principal ideal ring modulo *m*," Canad. J. Math, 54–59, 1954.
- Howell, "Spans in the module \mathbb{Z}_{m}^{s} ," Linear and Multilinear Algebra, 19:1, 67–77, 1986.

MMC: Capacity-Achieving Code Design

code design problem \Rightarrow an appropriate generalization of RREF

There are two matrix canonical forms that generalize RREF:

- Fuller, "A canonical set for matrices over a principal ideal ring modulo *m*," Canad. J. Math, 54–59, 1954.
- Howell, "Spans in the module \mathbb{Z}_m^s ," Linear and Multilinear Algebra, 19:1, 67–77, 1986.

Example: the matrices

$$\begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & 1 & 1 & 2 \\ 0 & 4 & 0 & 4 \\ 0 & 0 & 2 & 2 \end{bmatrix} \text{ over } \mathbb{Z}_8$$

are Fuller and Howell canonical forms, respectively. For details, see our paper and/or Kiermaier's thesis (in German).

MMC: Efficient Encoding-Decoding

First attempt:

- Encoding: transmit a row canonical form (RCF)
- Decoding: reduction to RCF

The decoding complexity is $\mathcal{O}(n^2m)$, but the encoding is hard.

Solution:

- Encoding: transmit a principal RCF
- Decoding: reduction to RCF

The encoding complexity is $\mathcal{O}(nm)$. Principal RCFs occupy a significant portion of all RCFs.

Hence,

The simple coding scheme asymptotically achieves the capacity.

Additive Matrix Channel

Second warmup problem

The additive matrix channel (AMC):

Y = X + W

where

- $X, Y \in \mathbb{R}^{n \times \mu}$;
- W: shape τ , uniform;
- W and X are independent.

Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: $\mu = (3,5) \begin{pmatrix} * & * & * \\ * & * & * & * \end{pmatrix}$

$$R^{\mu} = \underbrace{R \times \cdots \times R}_{\mu_1} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_2 - \mu_1} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_s - \mu_{s-1}}.$$

Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: $\mu = (3,5)$ * * * * * * * * *

$$R^{\mu} = \underbrace{R \times \cdots \times R}_{\mu_1} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_2 - \mu_1} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_s - \mu_{s-1}}.$$

The shape of a module generalizes the concept of dimension.

Theorem

For any finite *R*-module *M*, there is a unique μ such that $M \cong R^{\mu}$.

We call μ the shape of *M*, and write $\mu = \text{shape } M$.

Shape of a Matrix

The shape is a tuple of non-decreasing integers.

Example: $\mu = (3,5)$ * * * * * * * *

$$R^{\mu} = \underbrace{R \times \cdots \times R}_{\mu_1} \times \underbrace{\pi R \times \cdots \times \pi R}_{\mu_2 - \mu_1} \times \cdots \times \underbrace{\pi^{s-1} R \times \cdots \times \pi^{s-1} R}_{\mu_s - \mu_{s-1}}.$$

The shape of a module generalizes the concept of dimension.

Theorem

For any finite *R*-module *M*, there is a unique μ such that $M \cong R^{\mu}$.

We call μ the shape of *M*, and write $\mu = \text{shape } M$.

The shape of a matrix generalizes the concept of rank.

Definition

The shape of a matrix A is defined as the shape of the row span of A, i.e., shape A = shape(row(A)).

AMC: Review of [SKK10]

When *R* reduces to \mathbb{F}_q and $\mathbb{R}^{n \times \mu}$ reduces to $\mathbb{F}_q^{n \times m}$, shape τ reduces to rank *t*:

Exact capacity: a discrete symmetric channel

 $C_{AMC} = nm - \log_q \left(\# \text{ of matrices of rank } t \text{ in } \mathbb{F}_q^{n \times m} \right)$

2 Capacity-approaching code: v is a parameter

- Ifficient encoding-decoding:
 - encoding: error trapping
 - decoding: matrix completion

The AMC is an example of a discrete symmetric channel.

Theorem

The capacity of the AMC, in q-ary symbols per channel use, is

$$C_{\mathsf{AMC}} = \log_q |R^{n imes \mu}| - \log_q |\mathcal{T}_{\tau}(R^{n imes \mu})|$$

We need to derive new enumeration results:

•
$$|R^{n \times \mu}| = q^{n(\mu_1 + \dots + \mu_s)}$$
.
• $|\mathcal{T}_{\tau}(R^{n \times \mu})| = \begin{bmatrix} \mu \\ \tau \end{bmatrix}_q |R^{n \times \tau}| \prod_{i=0}^{\tau_s - 1} (1 - q^{i-n})$, where

$$\begin{bmatrix} \mu \\ \tau \end{bmatrix}_q = \prod_{i=1}^s q^{(\mu_i - \tau_i)\tau_{i-1}} \begin{bmatrix} \mu_i - \tau_{i-1} \\ \tau_i - \tau_{i-1} \end{bmatrix}_q.$$

AMC: Capacity-Approaching Code Design

code design problem \Rightarrow a generalization of error-trapping

Solution: layered error-trapping

Note that every matrix in $R^{n \times \mu}$ admits a π -adic decomposition. **Example:** $R = \mathbb{Z}_8$, n = 6, $\mu = (4, 6, 8)$, $X = X_0 + 2X_1 + 4X_2$

AMC: Capacity-Approaching Code Design

code design problem \Rightarrow a generalization of error-trapping

Solution: layered error-trapping

Note that every matrix in $R^{n \times \mu}$ admits a π -adic decomposition. **Example:** $R = \mathbb{Z}_8$, n = 6, $\mu = (4, 6, 8)$, $X = X_0 + 2X_1 + 4X_2$

after error-trapping...

AMC: Efficient Encoding-Decoding

- Encoding: layered error-trapping, O(nm) complexity
- Decoding: multistage matrix completion, $O(n^2m)$ complexity

Example: $R = \mathbb{Z}_8$, $X = X_0 + 2X_1 + 4X_2$. Note that

$$Y = X + W = X_0 + 2X_1 + 4X_2 + W.$$

() Take mod 2:
$$[Y]_2 = X_0 + [W]_2$$
.

2 Decode X₀ by completing [W]₂.

3 Clear
$$X_0$$
 from Y : $Y' = Y - X_0 = 2X_1 + 4X_2 + W$.

- **4** Take mod 4: $[Y']_4 = 2X_1 + [W]_4$.
- Solution Decode $2X_1$ by completing $[W]_4$.
- 6 Clear X_1 from Y': $Y'' = Y' 2X_1 = 4X_2 + W$.
- **0** We have $Y'' = 4X_2 + W$.
- ^(a) Decode $4X_2$ by completing W.

Additive-Multiplicative Matrix Channel

Now to the main event:

The additive-multiplicative matrix channel (AMMC):

Y = A(X + W)

where

•
$$X, Y \in \mathbb{R}^{n \times \mu}$$
;

- A: invertible, uniform;
- W: shape τ , uniform;
- A, X and W are independent.

Remark: This model is statistically identical to Y = AX + Z.

AMMC: Upper Bound on Capacity

Theorem

The capacity of the AMMC, in q-ary symbols per channel use, is upper-bounded by

$$C_{\mathsf{AMMC}} \leq \sum_{i=1}^{s} (\mu_i - \xi_i)\xi_i + \sum_{i=1}^{s} (n - \mu_i)\tau_i + 2s\log_q 4 + \log_q \binom{n+s}{s} + \log_q \binom{\tau_s + s}{s} - \log_q \prod_{i=0}^{\tau_s - 1} (1 - q^{i-n}), \text{ where } \xi_i = \min\{n, \lfloor \mu_i/2 \rfloor\}.$$

In particular, when $\mu \succeq 2n$, the upper bound reduces to

$$egin{aligned} \mathcal{C}_{\mathsf{AMMC}} &\leq \sum_{i=1}^s (n- au_i)(\mu_i-n) + 2s\log_q 4 \ &+\log_qinom{\tau_s-1}{s} + \log_qinom{\tau_s-s}{s} - \log_q\prod_{i=0}^{ au_s-1}(1-q^{i-n}). \end{aligned}$$

AMMC: Coding Scheme

coding scheme = principal RCFs + layered error-trapping

However, the combination turns out to be non-trivial. Hence, we focus on the special case when $\tau = (t, ..., t)$.

• Encoding:

• Decoding: upon receiving Y = A(X + W), the decoder simply computes the RCF of Y, which exposes \overline{X} with high probability.

This simple coding scheme asymptotically achieves the capacity for the special case when $\tau = (t, ..., t)$ and $\mu \succeq 2n$.

Conclusion

• studied three variants of finite-ring matrix channels

- exact capacities and an upper bound
- capacity-achieving codes
- efficient encoding-decoding methods
- refined some linear algebra tools over finite chain rings
 - row canonical form with a new proof for uniqueness
 - construction of principal RCFs
 - new enumeration results
- open problems:
 - Can we handle Y = A(X + W) for general shapes?
 - What if A is not invertible?

Finite Chain Rings in One Slide

Finite Chain Rings in One Slide

Let R be a finite chain ring, where

- $\langle \pi \rangle$ is the unique maximal ideal,
- q is the order of the residue field $R/\langle \pi \rangle$,
- s is the number of proper ideals.

Notation: (q, s) chain ring.

Finite Chain Rings in One Slide

Let R be a finite chain ring, where

- $\langle \pi
 angle$ is the unique maximal ideal,
- q is the order of the residue field $R/\langle\pi
 angle$,
- s is the number of proper ideals.

Notation: (q, s) chain ring.

π -adic decomposition

Let $\mathcal{R}(R, \pi)$ be a complete set of residues with respect to π . Then every element $r \in R$ can be written uniquely as

$$r = r_0 + r_1 \pi + r_2 \pi^2 + \dots + r_{s-1} \pi^{s-1}$$

where $r_i \in \mathcal{R}(R, \pi)$.

Definition

The degree, deg(r), of a nonzero element $r \in R^*$, where

$$r = r_0 + r_1 \pi + \cdots + r_{s-1} \pi^{s-1},$$

is defined as the *least* index *j* for which $r_j \neq 0$.

- by convention, deg(0) = s
- units have degree zero
- elements of the same degree are associates
- a divides b if and only if $deg(a) \le deg(b)$

Definition

A matrix *A* is in **row canonical form** if it satisfies the following conditions.

- In Nonzero rows of A are above any zero rows.
- One pivot of a row is of the form π^ℓ, and is the leftmost entry of the least degree.
- 3 For every pivot (say π^ℓ), all entries below and in the same column as the pivot are zero, and all entries above and in the same column as the pivot are residues of π^ℓ.
- If A has two pivots of the same degree, the one that occurs earlier is above the one that occurs later. If A has two pivots of different degree, the one with smaller degree is above the one with larger degree.

For example, over \mathbb{Z}_8 , $A = \begin{bmatrix} 0 & 2 & 0 & \overline{1} \\ \overline{2} & 2 & 0 & 0 \\ 0 & 0 & \overline{2} & 0 \\ 0 & \overline{4} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

is in row canonical form.

Reduction to Row Canonical Form: Example

Reduction is a variant of Gaussian elimination. An example over \mathbb{Z}_8 :

$$A = \begin{bmatrix} 4 & 6 & 2 & \overline{1} \\ 0 & 0 & 0 & 2 \\ 2 & 4 & 6 & 1 \\ 2 & 0 & 2 & 1 \end{bmatrix} \rightarrow A_1 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ 0 & 4 & 4 & 0 \\ \overline{6} & 6 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix} \rightarrow$$
$$A'_1 = \begin{bmatrix} 4 & 6 & 2 & 1 \\ \overline{2} & 2 & 4 & 0 \\ 0 & 4 & 4 & 0 \\ 6 & 2 & 0 & 0 \end{bmatrix} \rightarrow A_2 = \begin{bmatrix} 0 & 2 & 2 & 1 \\ 2 & 2 & 4 & 0 \\ 0 & \overline{4} & 4 & 0 \\ 0 & 4 & 4 & 0 \end{bmatrix} \rightarrow$$
$$A_3 = \begin{bmatrix} 0 & 2 & 2 & \overline{1} \\ \overline{2} & 2 & 4 & 0 \\ 0 & \overline{4} & 4 & 0 \\ 0 & \overline{4} & 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
which is in row canonical form.

Row canonical form is not necessarily an echelon form!

Construction of Principal RCFs

Definition

A row canonical form in $\mathcal{T}_{\kappa}(\mathbb{R}^{n \times \mu})$ is called *principal* if its diagonal entries d_1, d_2, \ldots, d_r $(r = \min\{n, m\})$ have the following form:

All principal RCFs in $\mathcal{T}_{\kappa}(R^{n \times \mu})$ can be constructed via a π -adic decomposition $X = X_0 + \pi X_1 + \cdots + \pi^{s-1} X_{s-1}$.

Example: s = 3, n = 6, $\mu = (4, 6, 8)$, and $\kappa = (2, 3, 4)$

