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INTRODUCTIONINTRODUCTION

Let R be a ring. A multiplicative matrix channel (MMC)
over R is a communication channel in which the input
X ∈ Rn×` and the output Y ∈ Rm×` are related by

Y = AX ,
where A ∈ Rm×n is called the transfer matrix.

�
MMCs turn out to be suitable models for the end-to-
end channel between a source node and a sink node in
wireless networks employing compute-and-forward over
a generic nested lattice [1]. In this context, X and Y
are matrices whose rows are the n transmitted packets
and m received packets, respectively, and A is a matrix
whose entries are determined by the random choices of
the network coding coefficients. Most importantly, the
underlying ring R is not necessarily a finite field, but a fi-
nite principal ideal ring (PIR), with the packets belonging
to some finite R-module.

�
Since every finite PIR is a product of finite chain rings, it
is natural to consider the study of MMCs over finite chain
rings. In this work, we assume channel side informa-
tion at the receiver (CSIR), that is, we assume that the
instances of the transfer matrix A are unknown to the
transmitter, but available at the receiver. Our results [2]
extend (and make use of) some of those in [3]. A related
work is [4].

FINITE CHAIN RINGSFINITE CHAIN RINGS

I Definition and notation
A chain ring is a ring in which the ideals are linearly
ordered under subset inclusion (⊆).

R a finite chain ring

π any generator for the maximal ideal of R

s the nilpotency index of π

q the order of the residue field R/〈π〉
Γ any set of coset representatives for R/〈π〉

I The ideals of R
R has precisely s + 1 ideals, namely,

R = 〈1〉 ⊃ 〈π〉 ⊃ 〈π2〉 ⊃ · · · ⊃ 〈πs−1〉 ⊃ 〈πs〉 = {0}.

I The π-adic decomposition
Every element x ∈ R can be written uniquely as

x = x (0) + x (1)π + x (2)π2 + · · · + x (s−1)πs−1,

where x (i) ∈ Γ.

MODULES AND MATRICES OVER CHAIN RINGSMODULES AND MATRICES OVER CHAIN RINGS

I Definitions
An s-shape µ = (µ0, µ1, . . . , µs−1) is a non-decreasing
sequence of s non-negative integers. We define

Rµ , 〈1〉 × · · · × 〈1〉︸ ︷︷ ︸
µ0

×〈π〉 × · · · × 〈π〉︸ ︷︷ ︸
µ1−µ0

× · · ·

× 〈πs−1〉 × · · · × 〈πs−1〉︸ ︷︷ ︸
µs−1−µs−2

,

which is an R-module.

I Structure theorem for finite R-modules
If M is a finite R-module, then

M ∼= Rµ

for some unique s-shape µ. We write µ = shape M.
The shape of an R-module generalizes the concept of
dimension of a vector space.

I The shape of a matrix
The shape of a matrix A is defined as

shape A = shape(row A) = shape(col A),

where row A and col A are the row and column spaces
of A, respectively. The shape of a matrix generalizes the
concept of rank.

I The Smith normal form
Two matrices A,B ∈ Rm×n are equivalent if A = PBQ for
some invertible matrices P and Q. If shape A = ρ, then
A ∈ Rm×n is equivalent to

diag(1, . . . ,1︸ ︷︷ ︸
ρ0

, π, . . . , π︸ ︷︷ ︸
ρ1−ρ0

, . . . , πs−1, . . . , πs−1︸ ︷︷ ︸
ρs−1−ρs−2

) ∈ Rm×n,

which is called the Smith normal form of A.

I Matrices with row constraints
Let n and ` be positive integers, and let λ be an s-shape
with λs−1 = `. The subset of matrices in Rn×` whose
rows belong to Rλ is denoted by Rn×λ.

CHANNEL MODELCHANNEL MODEL

Let the following be given.

n an integer (number of transmitted packets)

m an integer (number of received packets)

λ an s-shape (shape of packet space)

pA a probability distribution over Rm×n

Define MMCCSIR(A, λ) as a DMC with input X ∈ Rn×λ,
output (Y ,A) ∈ Rm×λ × Rm×n, and transition probability

pY ,A|X(Y ,A|X ) =

{
pA(A), if Y = AX ,
0, otherwise.

CHANNEL CAPACITYCHANNEL CAPACITY

Theorem: The capacity of MMCCSIR(A, λ) is given by

C =
s−1∑
i=0

E[ρs−i−1]λi,

where ρ = shape A.

CODING SCHEMECODING SCHEME

Before we begin, define the following.

Fq = R/〈π〉 the residue field

ϕ : R → Fq the natural projection map

ϕ̄ : Fq → Γ the coset representative selector

x i ∈ R x i = x (0) + x (1)π + · · · + x (i−1)πi−1

Layered approach: Combine s codes over the residue
field to obtain a code over the chain ring.

I Codebook C
Let C0, C1, . . . , Cs−1 be a sequence of matrix codes over
the residue field, where Ci ⊆ Fn×λi

q . We define

C =


s−1∑
i=0

X (i)πi : Xi ∈ Ci,0 ≤ i < s

 ,

where X (i) =
[
ϕ̄(Xi) 0

]
∈ Γn×`.

I Multistage decoding algorithm

Input: (Y ,A) ∈ Rm×λ × Rm×n, with shape A , ρ.

Output: X ∈ C such that Y = AX .

Step 1: Compute P,D,Q such that A = PDQ, where D
is the Smith normal form of A, and P,Q are invertible.

Step 2: Set X̃ , QX (unknown) and Ỹ , P−1Y (known),
so that Y = AX is equivalent to

Ỹ = DX̃ .
From this, compute X̃ (0)

ρs−1×λ0
, X̃ (1)

ρs−2×λ1
, . . . , X̃ (s−1)

ρ1×λs−1
.

Step 3: Based on X̃ = QX , we can show that
Yi = AiXi,

where

Yi =

ϕ(X̃ (i)
ρs−i−1×λi

)
− ϕ

((
Qρs−i−1×nX i

n×λi

)(i)
)

0

 ∈ Fm×λi
q ,

and

Ai =

[
ϕ
(
Qρs−i−1×n

)
0

]
∈ Fm×n

q .

From this, decode successively X0,X1, . . . ,Xs−1. Finally,
compute X according to the π-adic decomposition.

CODE FEATURESCODE FEATURES

I Rate and probability of error
The rate of the code is given by

R(C) = R(C0) + R(C1) + · · · + R(Cs−1),

and the probability of error is upper bounded as
Perr(C) ≤ Perr(C0) + Perr(C1) + · · · + Perr(Cs−1).

Thus, C is capacity-achieving in MMCCSIR(A, λ) if each
Ci is capacity-achieving in MMCCSIR(Ai, λi) (e.g., [3]).

I Complexity
The coding scheme has a polynomial time complexity.

I Universality
Similarly to [3], the complete knowledge of the probabil-
ity distribution of A is not needed, but only the knowl-
edge of E[ρ], where ρ = shape A.

EXTENSIONSEXTENSIONS

•One-shot to multi-shot.
•CSIR to non-coherent: Prepend headers.

For more details, see [2].

CONCLUSIONCONCLUSION

Motivated by nested-lattice-based physical-layer net-
work coding, this work has considered communication
in multiplicative matrix channels over finite chain rings.
As contributions:

•The channel capacity has been determined, general-
izing the corresponding result for finite fields.
•A polynomial-time capacity-achieving coding scheme

was proposed, combining (through a layered ap-
proach) several codes over the residue field to obtain
a code over the chain ring.
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