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What Are Rings?

Rings are algebraic structures with two operations (+ and ×).
Unlike fields, non-zero elements need not be invertible.

Examples of finite rings:
Finite fields (Fq);
Integers modulo n (Zn);
Quotients of Gaussian integers (e.g., Zn[i]);
Finite chain rings (including some of the above).
Products of those (e.g., Z2 × Z4).

Modules are the ring-theoretic counterpart of vector spaces.
Let R be a ring, and let Ω be a module over R.
Unlike vector spaces, we do not necessarily have Ω ∼= Rn.
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Multiplicative Matrix Channels

Let R be a ring, and let n,m, ` be positive integers.

Definition
A multiplicative matrix channel (MMC) over R is a communication
channel in which the input X ∈ Rn×` and the output Y ∈ Rm×` are
matrices related by

Y = AX ,

where A ∈ Rm×n is called the transfer matrix.

MMCs over finite fields have been studied before.

MMCs over finite rings are considered here.

Why?
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Physical-Layer Network Coding

x1 = 0101 x2 = 0011

1 2

relay
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Nóbrega, Feng, Silva, Uchôa-Filho MMCs over Finite Chain Rings NetCod’13, June 7, 2013 4 / 12



Physical-Layer Network Coding

x1 = 0101 x2 = 0011

x1+x2 = 0110

infer

1 2

Nóbrega, Feng, Silva, Uchôa-Filho MMCs over Finite Chain Rings NetCod’13, June 7, 2013 4 / 12



Physical-Layer Network Coding

x1 = 0101 x2 = 0011

x1+x2 = 0110

x1 + x2 = 0110 x1 + x2 = 0110

1 2
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Physical-Layer Network Coding

x1 = 0101 x2 = 0011
x1 + x2 = 0110 x1 + x2 = 0110

x2 = 0011 x1 = 0101

1 2
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Example: QPSK Modulation [1]
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Z2 × Z2 = {00, 10, 01, 11}
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Example: QPSK Modulation [2]

+1−1 0

+1

−1

1+i
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x2, s2 Z2[i ] = {0, 1, i , 1 + i}
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0 1

Solution:
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Rings and Modules Found in Practice

Uncoded modulation:
4-ASK −→ R = Z4

QPSK −→ R = Z2[i]
16-QAM −→ R = Z4[i]
64-QAM −→ R = Z8[i]

In all the cases above, Ω = R`.

Beyond uncoded modulation: Nested-lattice-based PNC
[Ordentlich, Zhan, Erez, Gastpar, Nazer, ISIT’11]
Construction A applied to a binary LDPC code.
−→ R = Z4 and Ω = R54000 × (2R)10800

[Sakzad, Sadeghi, Panario, Allerton’10]
Construction D applied to nested turbo codes.
−→ R = Z4 and Ω = R3377 × (2R)1688

All of these are examples of finite chain rings.

Nóbrega, Feng, Silva, Uchôa-Filho MMCs over Finite Chain Rings NetCod’13, June 7, 2013 7 / 12



Rings and Modules Found in Practice

Uncoded modulation:
4-ASK −→ R = Z4

QPSK −→ R = Z2[i]
16-QAM −→ R = Z4[i]
64-QAM −→ R = Z8[i]

In all the cases above, Ω = R`.

Beyond uncoded modulation: Nested-lattice-based PNC
[Ordentlich, Zhan, Erez, Gastpar, Nazer, ISIT’11]
Construction A applied to a binary LDPC code.
−→ R = Z4 and Ω = R54000 × (2R)10800

[Sakzad, Sadeghi, Panario, Allerton’10]
Construction D applied to nested turbo codes.
−→ R = Z4 and Ω = R3377 × (2R)1688

All of these are examples of finite chain rings.
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Extension to Larger Networks

x1 ∈ Ω

x2 ∈ Ω

xn ∈ Ω
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Extension to Larger Networks

x1 ∈ Ω

x2 ∈ Ω

xn ∈ Ω

...

...

...

...

u1 = b1x1 + · · ·+ bnxn

u2 = c1x1 + · · ·+ cnxn

...
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Extension to Larger Networks

x1 ∈ Ω

x2 ∈ Ω

xn ∈ Ω

...

...
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yi = d1u1 + d2u2 = ai1x1 + · · ·+ ainxn

u1 = b1x1 + · · ·+ bnxn
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Nóbrega, Feng, Silva, Uchôa-Filho MMCs over Finite Chain Rings NetCod’13, June 7, 2013 8 / 12



Extension to Larger Networks

x1 ∈ Ω

x2 ∈ Ω

xn ∈ Ω

...

...

...

...

yi = d1u1 + d2u2 = ai1x1 + · · ·+ ainxn
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u2 = c1x1 + · · ·+ cnxn



y1
...
ym


 =



a11 · · · a1n
... . . . ...
am1 · · · amn






x1
...
xn




...

Y = AX

Multiplicative matrix channel (MMC)
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Remark: Erroneous packets are discarded via
linear error-detecting codes (over the ring).
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The Problem

We study MMCs over finite chain rings.

AX Y

Assumptions
The probability distribution of A is arbitrary.
X and A are independent.
A is unknown at the transmitter, but known at the receiver (CSIR).
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Contribution: Channel Capacity

Let s be the number of proper ideals of the finite chain ring.

Theorem
The channel capacity is achieved with uniform input and is given by

C =
s−1∑

i=0

E[ρs−i−1]λi ,

where λ = shape Ω, and ρ = shape A.

The shape is an s-tuple of integers.
The shape of a module generalizes the concept of dimension.
The shape of a matrix generalizes the concept of rank.
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Contribution: Coding Scheme

Overview of the coding scheme
We propose a coding scheme that adopts a layered approach by
combining s codes over the residue field to obtain an overall code over
the finite chain ring.

The code construction makes use of the π-adic expansion.
Decoding is performed in a multistage fashion, layer by layer.

Code features
Capacity-achieving;
Polynomial time complexity;
Universal: only the knowledge of E[ρ] is needed (ρ = shape A).

Nóbrega, Feng, Silva, Uchôa-Filho MMCs over Finite Chain Rings NetCod’13, June 7, 2013 11 / 12



Contribution: Coding Scheme

Overview of the coding scheme
We propose a coding scheme that adopts a layered approach by
combining s codes over the residue field to obtain an overall code over
the finite chain ring.

The code construction makes use of the π-adic expansion.
Decoding is performed in a multistage fashion, layer by layer.

Code features
Capacity-achieving;
Polynomial time complexity;
Universal: only the knowledge of E[ρ] is needed (ρ = shape A).
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Thank you!
Roberto W. Nóbrega

http://gpqcom.ufsc.br/~rwnobrega/
rwnobrega@eel.ufsc.br
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