On Multiplicative Matrix Channels over Finite Chain Rings

Roberto W. Nóbrega*, Chen Feng[†], Danilo Silva*, Bartolomeu F. Uchôa-Filho*

*Department of Electrical Engineering, Federal University of Santa Catarina, Brazil [†]Department of Electrical and Computer Engineering, University of Toronto, Canada

2013 IEEE International Symposium on Network Coding June 7, 2013, Calgary, Alberta

Rings are algebraic structures with two operations (+ and ×).
Unlike fields, non-zero elements need not be invertible.

- Rings are algebraic structures with two operations $(+ \text{ and } \times)$.
 - Unlike fields, non-zero elements need not be invertible.
- Examples of finite rings:
 - Finite fields (\mathbb{F}_q) ;
 - Integers modulo $n(\mathbb{Z}_n)$;
 - Quotients of Gaussian integers (e.g., $\mathbb{Z}_n[i]$);
 - Finite chain rings (including some of the above).
 - Products of those (e.g., $\mathbb{Z}_2 \times \mathbb{Z}_4$).

• Rings are algebraic structures with two operations $(+ \text{ and } \times)$.

- Unlike fields, non-zero elements need not be invertible.
- Examples of finite rings:
 - Finite fields (\mathbb{F}_q) ;
 - Integers modulo $n(\mathbb{Z}_n)$;
 - Quotients of Gaussian integers (e.g., Z_n[i]);
 - Finite chain rings (including some of the above).
 - Products of those (e.g., $\mathbb{Z}_2 \times \mathbb{Z}_4$).
- Modules are the ring-theoretic counterpart of vector spaces.
 - Let *R* be a ring, and let Ω be a module over *R*.
 - Unlike vector spaces, we do not necessarily have $\Omega \cong \mathbb{R}^n$.

Let *R* be a ring, and let n, m, ℓ be positive integers.

Definition

A multiplicative matrix channel (MMC) over *R* is a communication channel in which the input $X \in R^{n \times \ell}$ and the output $Y \in R^{m \times \ell}$ are matrices related by

$$Y = AX$$
,

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is called the transfer matrix.

• MMCs over finite fields have been studied before.

Let *R* be a ring, and let n, m, ℓ be positive integers.

Definition

A multiplicative matrix channel (MMC) over *R* is a communication channel in which the input $X \in R^{n \times \ell}$ and the output $Y \in R^{m \times \ell}$ are matrices related by

$$Y = AX$$
,

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is called the transfer matrix.

- MMCs over finite fields have been studied before.
- MMCs over finite rings are considered here.

Let *R* be a ring, and let n, m, ℓ be positive integers.

Definition

A multiplicative matrix channel (MMC) over *R* is a communication channel in which the input $X \in R^{n \times \ell}$ and the output $Y \in R^{m \times \ell}$ are matrices related by

$$Y = AX$$
,

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ is called the transfer matrix.

- MMCs over finite fields have been studied before.
- MMCs over finite rings are considered here. Why?

relay

 $x_1 = 0101$

 $x_2 = 0011$

Nóbrega, Feng, Silva, Uchôa-Filho

MMCs over Finite Chain Rings

NetCod'13, June 7, 2013 4 / 12

 $x_1 + x_2 = 0110$ $x_2 = 0011$

 $\begin{aligned} x_2 &= 0011\\ x_1 + x_2 &= 0110\\ x_1 &= 0101 \end{aligned}$

Example: QPSK Modulation [1]

$$\mathbb{Z}_2 imes \mathbb{Z}_2 = \{00, 10, 01, 11\}$$

Nóbrega, Feng, Silva, Uchôa-Filho

Example: QPSK Modulation [1]

Example: QPSK Modulation [1]

Example: QPSK Modulation [2]

Solution:

$$\mathbb{Z}_2[i] = \{0, 1, i, 1 + i\}$$

Example: QPSK Modulation [2]

Example: QPSK Modulation [2]

Rings and Modules Found in Practice

Uncoded modulation:

- 4-ASK $\longrightarrow R = \mathbb{Z}_4$
- QPSK $\longrightarrow R = \mathbb{Z}_2[i]$
- 16-QAM $\longrightarrow R = \mathbb{Z}_4[i]$
- 64-QAM $\longrightarrow R = \mathbb{Z}_8[i]$

In all the cases above, $\Omega = R^{\ell}$.

Uncoded modulation:

- 4-ASK $\longrightarrow R = \mathbb{Z}_4$
- QPSK $\longrightarrow R = \mathbb{Z}_2[i]$
- 16-QAM $\longrightarrow R = \mathbb{Z}_4[i]$
- 64-QAM $\longrightarrow R = \mathbb{Z}_8[i]$

In all the cases above, $\Omega = \mathbf{R}^{\ell}$.

Beyond uncoded modulation: Nested-lattice-based PNC

- [Ordentlich, Zhan, Erez, Gastpar, Nazer, ISIT'11] Construction A applied to a binary LDPC code. $\rightarrow R = \mathbb{Z}_4$ and $\Omega = R^{54000} \times (2R)^{10800}$
- [Sakzad, Sadeghi, Panario, Allerton'10] Construction D applied to nested turbo codes. $\rightarrow R = \mathbb{Z}_4$ and $\Omega = R^{3377} \times (2R)^{1688}$

Uncoded modulation:

- 4-ASK $\longrightarrow R = \mathbb{Z}_4$
- QPSK $\longrightarrow R = \mathbb{Z}_2[i]$
- 16-QAM $\longrightarrow R = \mathbb{Z}_4[i]$
- 64-QAM $\longrightarrow R = \mathbb{Z}_8[i]$

In all the cases above, $\Omega = \mathbf{R}^{\ell}$.

Beyond uncoded modulation: Nested-lattice-based PNC

- [Ordentlich, Zhan, Erez, Gastpar, Nazer, ISIT'11] Construction A applied to a binary LDPC code. $\rightarrow R = \mathbb{Z}_4$ and $\Omega = R^{54000} \times (2R)^{10800}$
- [Sakzad, Sadeghi, Panario, Allerton'10] Construction D applied to nested turbo codes. $\rightarrow R = \mathbb{Z}_4$ and $\Omega = R^{3377} \times (2R)^{1688}$

All of these are examples of finite chain rings.

 $x_n \in \Omega$

Nóbrega, Feng, Silva, Uchôa-Filho

MMCs over Finite Chain Rings

Nóbrega, Feng, Silva, Uchôa-Filho

 $x_n \in \Omega$

We study MMCs over finite chain rings.

Assumptions

- The probability distribution of **A** is arbitrary.
- X and A are independent.
- A is unknown at the transmitter, but known at the receiver (CSIR).

Let s be the number of proper ideals of the finite chain ring.

Theorem

The channel capacity is achieved with uniform input and is given by

$$C = \sum_{i=0}^{s-1} \mathsf{E}[\boldsymbol{\rho}_{s-i-1}]\lambda_i,$$

where $\lambda = \operatorname{shape} \Omega$, and $\rho = \operatorname{shape} A$.

Let s be the number of proper ideals of the finite chain ring.

Theorem

The channel capacity is achieved with uniform input and is given by

$$C = \sum_{i=0}^{s-1} \mathsf{E}[\boldsymbol{\rho}_{s-i-1}]\lambda_i,$$

where $\lambda = \operatorname{shape} \Omega$, and $\rho = \operatorname{shape} A$.

The shape is an *s*-tuple of integers.

- The shape of a module generalizes the concept of dimension.
- The shape of a matrix generalizes the concept of rank.

Overview of the coding scheme

We propose a coding scheme that adopts a layered approach by combining *s* codes over the residue field to obtain an overall code over the finite chain ring.

- The *code construction* makes use of the π -adic expansion.
- *Decoding* is performed in a multistage fashion, layer by layer.

Overview of the coding scheme

We propose a coding scheme that adopts a layered approach by combining *s* codes over the residue field to obtain an overall code over the finite chain ring.

- The *code construction* makes use of the π -adic expansion.
- Decoding is performed in a multistage fashion, layer by layer.

Code features

- Capacity-achieving;
- Polynomial time complexity;
- Universal: only the knowledge of E[ρ] is needed (ρ = shape A).

Thank you! Roberto W. Nóbrega http://gpqcom.ufsc.br/~rwnobrega/ rwnobrega@eel.ufsc.br